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Abstract 
 

For years, the Particle Swarm Optimization (PSO) algorithm has been widely studied 

and many improved versions have been developed: from the swarm's topologies to 

the addition of new parameters, including machine learning approaches. However, the 

tuning of the fundamental PSO parameters has been less studied, but may lead to 

significant improvements on the convergence accuracy of PSO. This paper aims to 

develop an automated methodology to calibrate PSO parameters for a given 

optimization problem. The process is based on the kriging estimation of the best 

combination of PSO parameters. In this way, the Automated Tuning parameter 

Calibration (ATpC) methodology gives the optimal PSO setup for each considered 

problem in order to lead to a better convergence accuracy. The proposed ATpC 

methodology is applied to parametric optimization of truss structures. ATpC 

methodology performance is assessed by comparison of two different PSO setups 

usually used in the literature. The numerical results show that the ATpC methodology 

allows to significantly improve the convergence accuracy of PSO. 
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structures. 
 

  

 

 

Validation of an automated kriging-based 

methodology to calibrate PSO parameters: 

application to parametric optimization of truss 

structures 

 
J. Tondut1, N. Di Cesare² and S. Ronel1 

 
1LBMC, UCBL, Lyon, France 
2LMC2, UCBL, Lyon, France 

 

 

 

Proceedings of the Fourteenth International Conference on  
Computational Structures Technology 
Edited by B.H.V. Topping and J. Kruis 

Civil-Comp Conferences, Volume 3, Paper 4.5 
Civil-Comp Press, Edinburgh, United Kingdom, 2022, doi: 10.4203/ccc.3.4.5 

Civil-Comp Ltd, Edinburgh, UK, 2022 
 
 



 

2 

 

1  Introduction 
 

For years, meta-heuristic algorithms have been widely studied and many improved 

versions have been developed. From the observation of birds flocks and based on 

Reynolds' research [1], Kennedy and Eberhart [2] developed the Particle Swarm 

Optimization (PSO) algorithm. Founded on the collective intelligence of flocks, PSO 

uses a swarm of particles, defined as potential solutions of the considered 

optimization problem, converging by smartly following each other to the global 

optimum of the objective function to be optimized. There are four parameters that 

govern PSO equation: (i) the inertia weight 𝜔, (ii) the individuality parameter 𝑐1, (iii) 

the sociability coefficient 𝑐2 and (iv) the population size 𝑁.  

 

Many sensitivity analysis [3-6] have been performed on the PSO parameters in 

order to determine the best combination adapted to the considered problem to be 

solved. However, these references demonstrate that the choice of PSO parameters 

strongly depends on the optimization problem to be solved. Performing a sensitivity 

analysis on PSO can allow to find an efficient parameter configuration but is highly 

time-consuming. Based on these observations, it is interesting to develop a 

methodology that allows to automatically tune the PSO parameters adapted to the 

considered optimization problem. 

  

This short paper investigates a new automated methodology based on the 

development of a kriging-based meta-model in order to determine the best PSO 

parameter combination allowing the efficient convergence of the algorithm on the 

considered problem. The kriging meta-model is a geostatistical methodology 

developed by D. Krige [7] for the mining industry, used to predict the spatial 

distribution of ore. Then, in the late 80's, kriging has been adapted to the prediction 

of surrogate models of deterministic functions [8]. The kriging methodology allows 

to interpolate the values of a function 𝑓 at undetermined points 𝒙0 from the 

knowledge of 𝑓 on determined points 𝒙(𝑖).  The process is based on the hypothesis 

that the deterministic function 𝑓 is the realization of a Gaussian Process (GP) [9] 

computed with the deterministic function 𝑓 and a Gaussian noise modelled by a 

normal distribution. 

 

This short paper aims at presenting Automated Tuning parameters Calibration 

(ATpC) methodology that determine the optimal PSO setup leading to a better 

convergence accuracy, in a low number of fitness evaluation, applied to a truss 

structure optimization problem.    
 

2  Methods 
 

In this paper,  PSO performance has to be optimized, and is defined as the capability 

of the algorithm to efficiently converge to the global optimum of the considered 

objective function 𝑔. PSO performance is a function of the PSO parameters 

(𝜔, 𝑐1, 𝑐2, 𝑁). The PSO algorithm is applied to a mechanical truss structure 

optimization problem described as follows [10]:   
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{

min 𝑔(𝑆1, 𝑆2, … , 𝑆𝑝) = 𝑚

𝑢𝑦1, 𝑢𝑦2, 𝑢𝑦3, 𝑢𝑦4 < ±𝐷𝑚𝑎𝑥

𝜎𝑒 < 𝑅𝑒

 (1) 

with (𝑆1, 𝑆2, … , 𝑆𝑝) the 𝑝 design variables corresponding to beam sections, 𝑚 the 

mass of the truss structure, 𝑢𝑦𝑖 the vertical displacement of node 𝑖, 𝐷𝑚𝑎𝑥  the vertical 

displacement allowed, 𝜎𝑒 the axial stress in beam 𝑒, 𝑅𝑒 the elastic limit of the 

considered material. The displacements and stress are computed by a finite element 

model composed of 𝑗 nodes and 𝑝 beams representing the truss structure (see Fig.1). 

Forces 𝑃, and boundary conditions are applied to nodes according to the description 

of the problem. A penalty method is applied to deal with optimization constraints 

[11]. In PSO process, the number of iterations is set to 100.  

 

The ATpC methodology can be described with the following 5 steps: 

1. Latin Hypercube Sampling of 𝑛 PSO parameters setup (𝜔, 𝑐1, 𝑐2, 𝑁) 

2. Initialize the seed  

3. Apply PSO with the 𝑛 PSO setup to the truss problem (1) 

4. While the number of iterations < 𝜆 = 20 do: 

a. Compute the surrogate model by kriging methodology [12] with the 𝑛 

known points : PSO parameters and PSO response shape a response 

hypersurface. On this hypersurface, there is a minimum corresponding 

to a combination of PSO parameters minimizing PSO response for the 

problem (1) 

b. Compute the Expected Improvement (EI) criterion [13]. 

c. Create a new point where the EI is maximum, i.e. where the 

probability to find a better minimum is the highest.   

5. Identify the minimum value of the kriging meta-model obtained at the last 

iteration. This minimum is obtained for the best parameter setup.  

 

In order to compare ATpC performance, a base-set of PSO parameters is 

considered based on the classical PSO parameter values found in the literature 

[14,15]. These 3 calibrations of PSO parameters are applied to the truss optimization 

problem (1), and PSO performances are compared to ATpC calibration.  

 

The ATpC methodology and the classical PSO algorithm are performed 12 times. 

Mean and standard deviation are computed and compared. 

 

3  Results 
 

The truss structure optimization problem to be solved is composed of 𝑗 = 6 nodes 

and 𝑝 = 10 beams as represented in Fig.1. Beams material are assumed to be elastic-

isotropic with a Young modulus 𝐸 set to 68.9𝑒3 𝑀𝑃𝑎, and a density 𝜌 set to 

2770𝑘𝑔/𝑚3. The elastic limit 𝑅𝑒 is 172.37MPa. The minimal and maximal beam 

areas are set to 64.52𝑚𝑚² and 22.58𝑒3𝑚𝑚² respectively. The force 𝑃 applied is set 

to −4.448𝑒5𝑁 at nodes n°2 and 4 in the 𝑌 direction. The maximum displacement 

allowed 𝐷𝑚𝑎𝑥 is set to 50.8𝑚𝑚 at nodes n°1 to 4 in the Y direction.  
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The optimization of the 10-beams planar truss structure presented in Fig.1 is 

performed with ATpC PSO parameters, Trelea PSO parameters [15] and Clerc PSO 

parameters [14]. The Trelea configuration corresponds to (𝜔 = 0.6, 𝑐1 = 1.7, 𝑐2 =
1.7, 𝑁 = 50) whereas Clerc configuration uses the following set (𝜔 = 0.5, 𝑐1 =
2, 𝑐2 = 2, 𝑁 = 50). The minimum mass 𝑚 of the optimal structure obtained by PSO 

with Trelea, Clerc and  ATpC parameters are given in Table 1. The mean value, and 

standard deviation of the 12 runs of the optimal mass 𝑚 are computed. 

 
Figure 1: Truss structure configuration (6 nodes and 10 beams). 

 

Table 1: Mean and standard deviation of the 12 different fitness values obtained after 

the PSO optimization process using Trelea, Clerc and ATpC parameter 

configurations. 

 

The best fitness value (i.e. the minimal truss mass) obtained over the 12 runs of 

the ATpC methodology on the truss structure optimization problem and the best 

parameters tuning are given in Table 2 for the 10-beams truss structure optimization 

problem (1).  

𝜔 𝑐1 𝑐2 𝑁 Mass 𝑚 
(kg) 

0.72 1.58 0.98 49 2445 

Table 2: Best PSO parameters and fitness value found after performing the ATpC 

methodology to the 10-beams truss structure. 

 PSO Trelea 

parameters 

PSO Clerc 

parameters 

PSO ATpC 

Mean  2495.32kg  2493.74 kg  2482.82kg 

Standard 

deviation  

18.93 18.99 13.14 

Rank  3 2 1 
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4  Conclusions and Contributions 
 

This paper proposes a new methodology to automatize the tuning of PSO parameters 

applied to truss optimization problems. The optimal combination of PSO parameters 

is determined by a kriging process. Using this optimal combination of parameters, 

PSO is run with a classical Gbest topology configuration, in order to obtain the 

optimum of the considered problem. The ATpC methodology is applied to a 10-beams 

truss structure optimization problem. Results presented in this paper verify the validity 

of the proposed method. The average improvement of the ATpC methodology over 

the PSO parameter base-set is around 0.5% that represents a gain of mass of 12kg on 

the considered problem. From now, PSO parameters have to be calibrated for any 

optimization problem to solve. The investigation of the ATpC methodology with 

dynamic PSO parameters and other PSO topologies is an interesting and challenging 

direction to be developed in the future. Note that the proposed methodology may be 

applied to any other metaheuristic optimization algorithms that need parameters to be 

tuned, depending on the optimization problem to be solved. 
 
 

References 
 

[1] C.W. Reynolds, “Flocks, herds and schools: A distributed behavioral model”, 

in Proceedings of the 14th annual conference on Computer graphics and 

interactive techniques, 25-34, 1987. 

[2] J. Kennedy, R. Eberhart, “Particle swarm optimization”, in Proceedings of 

ICNN'95-international conference on neural networks, Vol. 4, pp. 1942-1948, 

1995. 

[3] E.T. Mohamad, R.S. Faradonbeh, D.J. Armaghani, M. Monjezi, A.M.  Muhd 

Zaimi, “An optimized ANN model based on genetic algorithm for predicting 

ripping production” in Neural Computing and Applications, 28(1), 1043-1050, 

2017. doi:10.1007/s00521-016-2359-8D.K.  

[4] D.J. Armaghani, M. Hajihassani, E.T. Mohamad, A. Marto, S.A. Noorani, 

“Blasting-induced flyrock and ground vibration prediction through an expert 

artificial neural network based on particle swarm optimization” in Arabian 

Journal of Geosciences, 7(12), 5383-5396, 2014.  

[5] M. Hajihassani, D.J. Armaghani, H. Sohaei, E.T. Mohamad, A. Marto, 

“Prediction of airblast-overpressure induced by blasting using a hybrid artificial 

neural network and particle swarm optimization” in Applied Acoustics, 80, 57-

67, 2014. 

[6] E. Momeni, D.J. Armaghani, M. Hajihassani, M.F.M Amin, “Prediction of 

uniaxial compressive strength of rock samples using hybrid particle swarm 

optimization-based artificial neural networks” in Measurement, 60, 50-63, 

2015. 

[7] D.G. Krige, “A statistical approach to some basic mine valuation problems on 

the Witwatersrand” in Journal of the Southern African Institute of Mining and 

Metallurgy, 52(6), 119-139, 1951. 



 

6 

 

[8] J. Sacks, W.J. Welch, T.J. Mitchell, H.P. Wynn, “Design and analysis of 

computer experiments” in Statistical science, 4(4), 409-423, 1989. 

[9] C.K. Williams, C.E. Rasmussen, “Gaussian processes for machine learning”, in 

Cambridge, MA: MIT press, Vol.2, No. 3, p.4, 2006. 

[10] R. Sedaghati, “Benchmark case studies in structural design optimization using 

the force method” in International journal of solids and structures, 42(21-22), 

5848-5871, 2005. 

[11] K.E. Parsopoulos, M.N. Vrahatis, “Particle swarm optimization method in 

multiobjective problems” in Proceedings of the 2002 ACM symposium on 

Applied computing, pp. 603-607, 2002. 

[12] M.L. Stein, “Interpolation of spatial data: some theory for kriging” in Science 

& Business Media, 1999. 

[13] J. Mockus, “The Bayesian approach to global optimization”, in System 

Modeling and Optimization (pp. 473-481), 1982.  

[14] M. Clerc, “The swarm and the queen: towards a deterministic and adaptive 

particle swarm optimization” in Proceedings of the 1999 congress on 

evolutionary computation-CEC99 (Cat. No. 99TH8406), Vol. 3, pp. 1951-1957, 

1999. 

[15] I.C. Trelea, “The particle swarm optimization algorithm: convergence analysis 

and parameter selection” in Information processing letters, 85(6), 317-325, 

2003. 

 




