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Abstract 

There are numerous uncertainties in the structural design, such as the randomness or 

variation in the loading, structural parameters, geometric parameters, operation 

conditions, etc. The Robust Design Optimization (RDO) methodology aims to 

determine an optimal solution corresponding to the insensitive system performance 

when subjected to these uncertainties. Available RDO approaches can effectively take 

into account these uncertainties. Still, accuracy and computational cost in evaluating 

the mean and variance (robustness measures) are prohibitive for designing complex 

and realistic structural systems. To obliviate this limitation, a novel Stochastic 

simulation-based approach is proposed in this paper. The newly developed approach 

is constructed based on the 'augmented optimization problem,' in which design 

variables are artificially considered as an uncertain parameters. Furthermore, for 

optimization, a two-stage approach is adopted. Firstly, the design space size is reduced 

by formulating an unconstraint optimization approach followed by any standard 

random search method (KN direct search method) to determine the optimal solution 

within the reduced design space. As the mean and variance frequently conflict with 

each other, so to obtain the Pareto optimum, a linear scalarized objective function is 

adopted. Three optimization problems: quadratic function and six-hump camel-back 

function, and 10-bar truss structure subjected to uncertain loading and uncertain 

material properties are solved with the proposed approach to demonstrate the 

efficiency of the proposed approach. The results obtained indicate that the proposed 

approach is as accurate as of the conventional Monte Carlo simulation approach. This 

paper allows the designers to design insensitive structure systems. Moreover, the 

proposed RDO approach is general and not limited to the civil structures only, but it 

can also be enforced in the design of any realistic linear/nonlinear systems. 
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1  Introduction 

In a realistic state, the structural systems are inherent in several inevitable 

uncertainties, such as loading, structural parameters, etc. Typically, a 

deterministically designed structural system may not perform as intended due to 

inherent uncertainties, leading to improper design. One of the most promising ways 

to minimize the effect of these uncertainties is the Robust Design Optimization (RDO) 

methodology. Robust design pioneered by Taguchi [1] aims to minimize the mean 

and variance [2] to ensure the insensitive system is subjected to uncertainties[3–8]. 

Figure 1. shows the concept of RDO. As shown, design-1 (optimal design) has the 

lower optimal value of performance function (f) as compared to design-2 (robust 

design) when subjected to the same variation (Δx) in the structural parameter. Since 

the variation in performance function is less in design-2 (Δfrobust < Δf), design-2 is 

considered insensitive to the uncertainties. 

 

 
Figure 1: RDO concept. 

 

The RDO problem can be mathematically formulated as the determination of, 

 * 2arg min ( ), ( ) , subjected to   ( ) 0,f f c 


= 
x

x x x g x         (1) 

where, 

 ( ) E ( ) ( ) ( ) ,f f f p d


= = x θ,x θ,x θ θ                        (2) 
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   x θ,x x θ,x x θ θ        (3) 



3 

 

denotes the mean and variance of the performance function ( ) : xn n
f R R  →θ,x , 

respectively. E [ ]   represents expectation with respect to Probability Distribution 

Function (PDF) for θ. The constraint vector is characterized by ( )cg x . Usually, mean 

and variance frequently conflict with each other, so to obtain the Pareto optimum, a 

linear scalarized performance function is adopted [9]. In case of many uncertain 

parameters and implicit performance, the evaluation of the stochastic integrals 

Equations (2) & (3) is a challenging task. Methods in literature to evaluate these 

integrals can be categorized as analytical, approximation-based, and simulation-

based. Estimating Equation (2) analytical is possible only for limited cases; therefore, 

several approximation-based methods are developed. The well-known approximation 

approaches include Taylor Series Expansion (TSE) based approach [6,10–15] and 

Dimension Reduction (DR) method [16]. The accuracy of the TSE methods is 

infeasible due to the limitation of evaluating the high-order derivates. In contrast, the 

DR method does not apply to problems with a large number of uncertain parameters 

[17]. Metamodels [18] are efficient, but models themselves involve several 

approximations, and thus, achieving higher accuracy is infeasible. Simulation-based 

approaches are applicable to the complex high dimensional problem, but high 

accuracy necessitates a high computational cost. Due to this reason, the simulation-

based approach is prohibitive.  

Thus, an effective and efficient novel stochastic simulation-based approach is 

proposed in this paper. The results are compared with the conventional Monte Carlo 

Simulation approach and indicate the proposed approach's accuracy and effectiveness.  

2  Methods 

Consider any structural performance function ( , ) : xn n
f R R  →θ x . Initially discussed 

in [19], the augmented formulation artificially considers the design parameters as 

uncertain. In this framework, an auxiliary PDF is defined as 

,

( , ) ( , )
( , ) ,

E [ ( , )]x

f p

f

 =
θ x θ x

θ x
θ x

                                                 (4) 

where, 

( , ) ( | ) ( ).p p p=θ x θ x x                                                 (5) 

In this setting, the mean of performance function  E ( , )f θ x  is given as, 

  ,

( )
E ( ) E [ ( , )],

( )
xf f

p
 


=

x
θ,x θ x

x
                                       (6) 

and 

,E [ ( , )] ( , ) ( , ) .x f f p d d

 

=  θ x θ x θ x θ x                                     (7) 

where the marginal PDF ( ) x  is equal to 

( ) ( , ) .d 


= x θ x θ               (8) 
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In this setting, since ,E [ ( , )]x f θ x  is a normalizing constant, the minimization is 

equivalent to minimization of ( )J x , given as, 

( )
( ) .

( )
J

p


=

x
x

x
               (9) 

Note that minimization of ( )J x is equivalent to minimize ( ) x , for simplicity 

( )p x is considered to be uniformly distributed. The ( ) x  is simulated as explained in 

[19]. Similarly, in the setting of augmented formulation, the variance of performance 

function is given as, 

( )
2

( , ) ( , ) ( ) .fh f = −θ x θ x x                                          (10) 

The auxiliary PDF ( , ) θ x  is equal to 

,

( , ) ( , )
( , ) ,

E [ ( , )]x

h p

h

 =
θ x θ x

θ x
θ x

                                            (11) 

where, 

 ( , ) ( ) ( ),  p p p=θ x θ x                                                 (12) 

and 

  ,

( )
E ( , ) E [ ( , )]

( )
xh h

p
 


=

x
θ x θ x

x
                                       (13) 

where the marginal PDF ( ) x  is equal to 

( ) ( , )d 


= x θ x θ .                                                    (14) 

In this setting, since 
,E [ ( , )]x h θ x  is a normalizing constant, the minimization is 

equivalent to minimization of ( )J x , given as, 

( )
( )

( )
J

p


=

x
x

x
.                                                          (15) 

Thus, the RDO optimization can be reformulated as the determination of  

( )
2

*

2

( , ) ( )( , )
arg min E (1 ) ,

f

f f

ff



 

 

 −
 = + −
 
 

x

θ x xθ x
x                      (16) 

where f  and 
2

f  are obtained from solving the optimization problem of minimizing 

the mean and variance of the structural response, respectively. The weighting factor 

[0,1]   represents the relative importance of the two objective functions.  

An excellent approach to reduce the design space is adopted from [19]. As 

proposed in [20], the average value of ( )J x  given as, 

1
ˆ1

( ) ( ) ( )k

k k

k k

I

k
I I

I I

V
H I J d d

V V
−= = x x x x                                       (17) 
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is minimized. Where 
kIV  and  

1
ˆ
kI

V
−

 denote the volume of the set kI  and 1
ˆ
kI − , 

respectively such that 1
ˆ

k kI I −  and 1
ˆ
kI −  is the optimal subset identified at the (k-1)th 

iteration such that 1 1
ˆ ˆ
kI I−     . Based on the samples distributed according to 

( , ) θ x  belonging to subset 1
ˆ
kI − , an estimate of ( )kH I  is given as, 

1 1
ˆ ˆ

/
( ) ,

/

k k

k k

I I

k

I I

N V
H I

N V
− −

=                                                  (18) 

where 
kIN  and  

1
ˆ
kI

N
−

 denote the number of samples from π(φ) belonging to the sets 

kI  and 1
ˆ
kI − , respectively. Some predefined shape of the admissible subset is adopted 

(hyper-rectangle). Later, the standard random search (KN search) approach is adopted 

to determine the optimal solution within the above-identified subset. More detail can 

be found in [20].  

3  Results 

Example-3.1: Quadratic test function 

The quadratic function considered is expressed as 

( , ) (2 )(0.1 0.1 ) 0.3f x x x = − − − + ,         (19) 

where x is the design variable [0,4] = , and θ is the uncertain parameter uniformly 

distributed [ 0.2,0.2]− .  

Figure 2.  shows the mean and variance minimization results evaluated from the 

MCS approach using 100,000 sample, respectively. Figure 3.  illustrates the upper and 

lower limits of design parameter obtained from the proposed approach (25 

independent runs) for mean and variance minimization, respectively. It can be 

observed that with the increase in generation the optimal result is converged. The 

results are in good agreement with the MCS approach. 

 

 
Figure 2: (a) Mean minimization versus design variable x1, (b) Variance 

minimization versus design variable x1. 
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Figure 3: Limits of design variable for (a) mean minimization and (b) variance 

minimization. 

 

 
Figure 4: (a) subsets of reduced design space for variance minimization, (b) Pareto 

front. 

 

Figure 4. (a) shows the iteratively identified reduced design space. It can be 

observed that the smallest design space (red colour) accurately includes the optimal 

solution. Figure 4. (b) show the Pareto front. As expected, mean and variance 

minimization lies on the extreme ends. 

Example-3.2: Six-hump camel-back function 

A multiple minima six-hump camel-back function is considered, given as 
6

2 4 2 4( , ) 4 22 4 4
3

x
f x x x x   = − + + − + ,            (20) 

where x is the design variable [ 2, 2] = − , and θ is the uncertain parameter uniformly 

distributed [ 1,1]− . 

Figure 5. shows the mean and variance minimization results evaluated from the 

MCS approach using 100,000 samples. Figure 6. illustrates the upper and lower limits 

of design parameters obtained from the proposed approach (25 independent runs) 

corresponding to mean and variance minimization. It can be observed that results are 

well matched with MCS. 
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Figure 5: (a) Mean minimization versus design variable x1, (b) Variance 

minimization versus design variable x1. 

 

 
Figure 6: Limits of design variable for (a) mean minimization and (b) variance 

minimization.  

Example-3.3: 10-bar truss structure 

Ten-bar truss structure is shown in Figure 7.  

                  
Figure 7: Ten-bar truss structure. 

 

The end node of the truss is subjected to a random vertical load P normally distributed 

with a mean value of 100kN and standard deviations of 20 kN. The Young's modulus 
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(E) for the truss is uncertain and normally distributed with mean and standard 

deviation of 100N/m2 & 80 N/m2 and 30 N/m2 &10 N/m2, respectively, for the two 

groups. The cross-sectional areas of the two groups A1 & A2 are considered as design 

variables. Compliance (defined as the inner product of the applied load vector and the 

nodal displacement vector) is the performance function. A volume constraint 500V   

is considered. In this setting, uncertain parameters 1 2[ , , ]E E P=θ  and 1 2[ , ]A A=x .  

Table 1 represents the results obtained from solving the mean, variance, and 

combination of mean and variance minimization problem, respectively. It can be 

observed that the results obtained are in good agreement with that of MCS results. 

This indicates that the proposed approach (PA) is accurate.  

 
Case 

α 

A1 

(mm2) 

A2 

(mm2) 

*(x )g  

(Nm) 

2 *( )g x  

(Nm)2 

PA MCS PA MCS PA MCS PA MCS 

1    55.6 55.0 29.4 30.0 13.4 13.9 215.9 216.6 

0.5  60.8 60.5 23.9 23.6 20.5 20.4 186.1 186.4 

0    64.2 64.0 20.3 20.5 28.1 28.0 172.5 172.4 

Table 1: Results of the ten-bars truss structure. 

4  Conclusions and Contributions 

This paper attempts to contribute a novel stochastic simulation-based optimization 

approach to perform the robust design optimization of the structures. Issues with the 

available approximate, analytical, and simulation-based methods are also highlighted. 

The proposed approach is constructed on the concept of the augmented formulation. 

The two-stage optimization approach is adopted to obtain the desired accuracy. For 

optimization, firstly, the size of the design space is reduced by using the concept of 

stochastic subset optimization. Then direct search optimization is performed to 

determine the optimal design in the reduced design space. The effectiveness of the 

proposed approach is illustrated with the help of three well-known optimization 

problems, including (1) quadratic function, (2) six-hum camel-back function, and (3) 

ten-bar truss structure. Comparisons between the conventional Monte Carlo 

Simulation approach and the proposed approach are performed. The results obtained 

indicate that the proposed approach is as accurate as of the conventional Monte Carlo 

simulation approach. This paper allows the designers to design insensitive structure 

systems. Moreover, the proposed RDO approach is general and not limited to the civil 

structures only, but it can also be enforced in the design of any realistic 

linear/nonlinear systems. It should be noted that this study focuses on unconstrained 

optimization and could be extended to constrained optimization. Further, research 

efforts will focus on the issues and applications of engineering design in practice. 
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