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Abstract 
 

Neural networks show impressive performance in lots of domains to handle problems 

of high complexity. They are universal approximators and can, in principle, be used 

to learn any type of model. Their use would be of a great benefit as they can be 

intended to automate major tasks within an engineering project (such as system 

dimensioning, certification, and criteria verification). However, it is not yet customary 

to use these technics for lack of competitiveness against forward engineering 

calculations. One major issue is the robustness and the difficulty to ensure high 

precisions for deterministic predictions. In this work, we investigate the ability of 

neural networks to be used to approximate engineering models and their performance 

in terms of precision and accuracy per target relative error. Increasing accuracy 

requires understanding how these models work in a deeper way. Applications on use-

cases of mechanical structures are used to understand the behaviour of neural 

networks for this type of problems and illustrate the encountered constraints. 
 

Keywords: model approximation, machine learning, neural networks, deep learning, 

model precision, mechanical structures. 
 

1  Introduction 
 

Even though neural networks are used for very impressive applications and the 

numerical framework to manage machine learning models is at its best, many domains 

based on deterministic calculations are in lack of use-cases [1], [2]. These new 

technics may seem not to be practical since each engineering system is unique, and it 

 

 

Using neural networks for dimensioning and 

certification of mechanical systems: model 

precision and accuracy 

 
Y. El Assami and B. Gely 

 

Technology & Engineering Center, Capgemini Engineering 

Blagnac, France 

 

 

Proceedings of the Fourteenth International Conference on  
Computational Structures Technology 
Edited by B.H.V. Topping and J. Kruis 

Civil-Comp Conferences, Volume 3, Paper 4.3 
Civil-Comp Press, Edinburgh, United Kingdom, 2022, doi: 10.4203/ccc.3.4.3 

Civil-Comp Ltd, Edinburgh, UK, 2022 
 
 



 

2 

 

is not obvious to distinguish common patterns from different problems. Also, 

resources needed to implement a machine learning model are generally more costly 

than what it takes to implement a single engineering model itself, as datasets are to be 

prepared for model training. 
 

In fact, using machine learning models to simulate engineering systems may be 

interesting for problems that share similar inputs. This interest is more obvious for 

engineering problems in need of high numerical resources with consequent human 

intervention for modelling or post processing. We can think of direct use of these 

methods on examples of system dimensioning or certification and criteria verification. 
 

Neural networks, for instance, have multiple advantages in terms of performance 

and flexibility [3], [4]. It has been demonstrated that neural networks are universal 

approximators [5]–[7]. They seem to be adequate to mimic engineering models and 

predict results without knowing the real details of a model [8]. Each perceptron 

calculates a linear combination of its inputs. The combination of many linear relations, 

with the use of activation functions, allows the calculation of a suitable approximation 

of a highly nonlinear problem. 
 

Despite the advantages of these networks, there remain certain constraints linked 

to the non-interpretable nature of internal characteristics ("black box" [9]). Likewise, 

the number of parameters and hyper-parameters needed to define and compile such 

models is large, with no straightforward way to make optimal choices. 
 

To make deep learning based expert engineering systems, model precision is the 

main issue that should be dealt with. To evaluate the feasibility of high precision 

learning, mechanical structures of different behaviours are defined as use-cases. These 

examples are chosen to be simple enough to make an intuition on the behaviour of 

neural networks in terms of prediction precision and complex enough to present 

challenging nonlinear relations between characteristics. These use-cases can be 

generalized to wider range of problems in different fields, as long as coherent datasets 

are established. 
 

2  Methods 
 

We would like to predict results of mechanical models using neural networks. These 

models are only use-cases and methods inspected hereby can be generalized to any 

alike situation. We target the quantification of resistant effort of several mechanical 

systems (system of bars under tension, fittings in aeronautics, …). Each system is 

defined with the geometry of its components, a material and, incidentally, a loading 

case. These mechanical models are used to generate synthetic datasets. But the trained 

neural networks suppose that the original models are not known or difficult to 

establish, which would always be the case. 
 

Data we dispose of is numerically perfect (without noise). The aim is to train neural 

networks to reproduce this data with high precision. It is less likely to have problems 

of overfitting under these conditions and we have a large flexibility for fine tuning. 
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Safety is a major issue while dimensioning (expressed for example in terms of 

safety criteria or reserve factors). To meet safety conditions, relative error on each 

prediction needs to be controlled. Thus, it is more convenient to use relative errors to 

evaluate the quality of a neural network. More exactly, the accuracy 𝑠𝑒 of relative 

error e will be used as main metric. 
 

 𝑠𝑒 =
number of test data with relative error<𝑒

total number of test data
 (1)

  

In the process of model approximation, different architectures are used. They are 

based on dense networks (DNN), with rectified linear activation function for several 

layers. The size of a model depends on the variance of the mechanical problem and 

the number of parameters. The choice of an architecture is based on experience and 

validated by several tests of performance. Gradient descent is realized with moment 

algorithm Adam [10] with different sets of parameters used for fine tuning. 
 

In the framework of this study, the main purpose is to achieve high accuracies, 

even if calculations last longer. For datasets with very reduced noise, large number of 

iterations is allowed. Sometimes, training is executed more than once, with different 

initial learning rates, to seek higher numerical stability and bring the cost function as 

close as possible to a local minimum. In what follows, we present and discuss results 

of mechanical model approximation with neural networks in terms of accuracy per 

target relative error. 
 

3  Results 
 

To make an intuition about the performance of a neural network, let's apply it on a 

linear problem. For example, 𝑁Rd = 𝑏1ℎ𝑓y + 𝑏2ℎ𝑓y + 𝑏3ℎ𝑓y, where 𝑁Rd is the normal 

resistance of a system of parallel bars, ℎ𝑏𝑖 the area of bar 𝑖 (𝑏𝑖 variable) and 𝑓y the 

limit of elasticity (constant). This model can obviously be represented with a single 

perceptron (linear regression). This problem is idealized, and the cost function has one 

global minimum. Theoretically, the weights of the perceptron should be equal to the 

constant parameters ℎ𝑓y. But as the optimization is done with gradient descent, there 

will always be a numerical error related to the chosen hyper-parameters. 
 

When a high precision is required, the number of iterations is a parameter of high 

importance. And even with sophisticated optimizers, it helps to run training more than 

once with refined initial learning rates. The present model shows perfect scores for 

target relative errors higher than 10-3 (𝑠0.1% = 100%). This score decreases for 

smaller target relative errors (e.g. 𝑠0.01% = 92%). The precision achieved here can 

also be deduced from the weights and the bias, calculated with a relative error of the 

order 10-4 (Table 1). Values of the tolerance, used to state the convergence (and thus 

affects the number of epochs), make a difference on the results when coarse. But there 

is a limit under which its importance is forsaken (Table 1). 
 

In a more general case, if one was not aware of this linear relation, a neural network 

with a bigger capacity could have been used. This increase of capacity can sometimes 

result in lower performance [11], [12] as more local minima may appear. 
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Nevertheless, this simple calculation allows quantifying the best case expected 

precision of a model under a given configuration. 
 

Tolerance Pearson score Accuracy for 
relative error 

of 0.1% 

Accuracy for 
relative error 

of 0.01% 

Mean relative 
error on model 

weights 

Relative error 
on bias 

Number of 
epochs 

 𝑅2 𝑠0.1% 𝑠0.01% 
〈𝑤𝑖〉𝑖≠0 − ℎ𝑓y

ℎ𝑓y

 
𝑤0 − ℎ𝑓y

ℎ𝑓y

  

10-3 0.69274327 0.5% 0.00% 5.6e-1 4.1e-1 2794 
10-5 0.99994436 47.8% 5.91% 7.4e-3 5.6e-3 8022 
10-7 0.99999978 100% 74.9% 4.7e-4 3.5e-4 8418 

10-9 0.99999992 100% 93.1% 2.8e-4 2.1e-4 8797 
10-11 0.99999993 100% 91.6% 2.7e-4 2.1e-4 8798 

Table 1: Evolution of relative error with respect to tolerance and number of epochs. 
 

The approximation of a model with nonlinear relations surely needs the use of 

neural networks with bigger capacities. Several architectures are tested, and fine 

tuning applied to achieve the highest precisions. A perfect score can be obtained for a 

relative error up to 5%. But at 𝑒 = 1%, 𝑠1% = 96% at most (Figure 1). 
 

 

Figure 1: Evolution of accuracy w.r.t target relative error for dense neural networks 

of 8x16 units, 8x128 units and 1x32 with polynomial features. 

 

Improving the performance of a model becomes more and more costly. One of the 

solutions to overcome this limit is second order features (square and cross products). 

Such approaches are used for simpler models but become also justified for neural 

networks to achieve better performance (𝑠0.1% > 99%) with architectures of much 

lower capacity (Figure 1). 
 

4  Conclusions and Contributions 
 

Neural networks are underused as universal approximators for engineering models 

due to the lack of competitivity against numerical models and the assumption that 

each system is unique. However, from another angle, they can make many studies 

easier, especially for multi-dimensional problems that share similar characteristics. If 
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the complexity of engineering systems varies a lot for each problem, the process of 

training a neural network remains the same. 
 

Using neural networks to predict deterministic results might appear to be odd, as they 

are mostly evaluated from a statistical point of view. But the nature of the applications 

justifies this use. One difficulty that can be encountered though and that this paper 

tries to evaluate is the precision of predictions. We notice that even with parameter 

optimization, capacity variation of networks and fine tuning, there is always a 

numerical limit to the precision that becomes difficult to overcome. 
 

As shown here, quantifying the relative error for each test case may lead to 

conclusions different from when the reasoning is over usual metrics such as distance 

indicators (MSE) or correlation indicators (R2). And as it can be expected, relative 

errors are higher for results with lower amplitudes. If the studied system requires high 

precision that cannot be provided by a neural network, the robustness of this network 

used for approximation should be quantified and taken into account (in the safety 

coefficients for example). 
 

Polynomial features are among the ways that were proven to easily increase efficiency 

of machine learning models. Such technic is usually not convenient for learning 

models with large numbers of inputs (computer vision or time series), but it can be 

justified for problems with few parameters like the use-cases described in this work. 
 

Despite all the technics used to improve the models, most of the time, it is not yet 

possible to achieve perfect accuracy for small target relative errors, even for problems 

with known global minima. Reaching perfect accuracy is a feedforward goal that 

would encourage considering neural networks as a way to automate solving complex 

physical models. 
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