

1

Abstract

Neural networks show impressive performance in lots of domains to handle problems

of high complexity. They are universal approximators and can, in principle, be used

to learn any type of model. Their use would be of a great benefit as they can be

intended to automate major tasks within an engineering project (such as system

dimensioning, certification, and criteria verification). However, it is not yet customary

to use these technics for lack of competitiveness against forward engineering

calculations. One major issue is the robustness and the difficulty to ensure high

precisions for deterministic predictions. In this work, we investigate the ability of

neural networks to be used to approximate engineering models and their performance

in terms of precision and accuracy per target relative error. Increasing accuracy

requires understanding how these models work in a deeper way. Applications on use-

cases of mechanical structures are used to understand the behaviour of neural

networks for this type of problems and illustrate the encountered constraints.

Keywords: model approximation, machine learning, neural networks, deep learning,

model precision, mechanical structures.

1 Introduction

Even though neural networks are used for very impressive applications and the

numerical framework to manage machine learning models is at its best, many domains

based on deterministic calculations are in lack of use-cases [1], [2]. These new

technics may seem not to be practical since each engineering system is unique, and it

Using neural networks for dimensioning and

certification of mechanical systems: model

precision and accuracy

Y. El Assami and B. Gely

Technology & Engineering Center, Capgemini Engineering

Blagnac, France

Proceedings of the Fourteenth International Conference on
Computational Structures Technology
Edited by B.H.V. Topping and J. Kruis

Civil-Comp Conferences, Volume 3, Paper 4.3
Civil-Comp Press, Edinburgh, United Kingdom, 2022, doi: 10.4203/ccc.3.4.3

Civil-Comp Ltd, Edinburgh, UK, 2022

2

is not obvious to distinguish common patterns from different problems. Also,

resources needed to implement a machine learning model are generally more costly

than what it takes to implement a single engineering model itself, as datasets are to be

prepared for model training.

In fact, using machine learning models to simulate engineering systems may be

interesting for problems that share similar inputs. This interest is more obvious for

engineering problems in need of high numerical resources with consequent human

intervention for modelling or post processing. We can think of direct use of these

methods on examples of system dimensioning or certification and criteria verification.

Neural networks, for instance, have multiple advantages in terms of performance

and flexibility [3], [4]. It has been demonstrated that neural networks are universal

approximators [5]–[7]. They seem to be adequate to mimic engineering models and

predict results without knowing the real details of a model [8]. Each perceptron

calculates a linear combination of its inputs. The combination of many linear relations,

with the use of activation functions, allows the calculation of a suitable approximation

of a highly nonlinear problem.

Despite the advantages of these networks, there remain certain constraints linked

to the non-interpretable nature of internal characteristics ("black box" [9]). Likewise,

the number of parameters and hyper-parameters needed to define and compile such

models is large, with no straightforward way to make optimal choices.

To make deep learning based expert engineering systems, model precision is the

main issue that should be dealt with. To evaluate the feasibility of high precision

learning, mechanical structures of different behaviours are defined as use-cases. These

examples are chosen to be simple enough to make an intuition on the behaviour of

neural networks in terms of prediction precision and complex enough to present

challenging nonlinear relations between characteristics. These use-cases can be

generalized to wider range of problems in different fields, as long as coherent datasets

are established.

2 Methods

We would like to predict results of mechanical models using neural networks. These

models are only use-cases and methods inspected hereby can be generalized to any

alike situation. We target the quantification of resistant effort of several mechanical

systems (system of bars under tension, fittings in aeronautics, …). Each system is

defined with the geometry of its components, a material and, incidentally, a loading

case. These mechanical models are used to generate synthetic datasets. But the trained

neural networks suppose that the original models are not known or difficult to

establish, which would always be the case.

Data we dispose of is numerically perfect (without noise). The aim is to train neural

networks to reproduce this data with high precision. It is less likely to have problems

of overfitting under these conditions and we have a large flexibility for fine tuning.

3

Safety is a major issue while dimensioning (expressed for example in terms of

safety criteria or reserve factors). To meet safety conditions, relative error on each

prediction needs to be controlled. Thus, it is more convenient to use relative errors to

evaluate the quality of a neural network. More exactly, the accuracy 𝑠𝑒 of relative

error e will be used as main metric.

 𝑠𝑒 =
number of test data with relative error<𝑒

total number of test data
 (1)

In the process of model approximation, different architectures are used. They are

based on dense networks (DNN), with rectified linear activation function for several

layers. The size of a model depends on the variance of the mechanical problem and

the number of parameters. The choice of an architecture is based on experience and

validated by several tests of performance. Gradient descent is realized with moment

algorithm Adam [10] with different sets of parameters used for fine tuning.

In the framework of this study, the main purpose is to achieve high accuracies,

even if calculations last longer. For datasets with very reduced noise, large number of

iterations is allowed. Sometimes, training is executed more than once, with different

initial learning rates, to seek higher numerical stability and bring the cost function as

close as possible to a local minimum. In what follows, we present and discuss results

of mechanical model approximation with neural networks in terms of accuracy per

target relative error.

3 Results

To make an intuition about the performance of a neural network, let's apply it on a

linear problem. For example, 𝑁Rd = 𝑏1ℎ𝑓y + 𝑏2ℎ𝑓y + 𝑏3ℎ𝑓y, where 𝑁Rd is the normal

resistance of a system of parallel bars, ℎ𝑏𝑖 the area of bar 𝑖 (𝑏𝑖 variable) and 𝑓y the

limit of elasticity (constant). This model can obviously be represented with a single

perceptron (linear regression). This problem is idealized, and the cost function has one

global minimum. Theoretically, the weights of the perceptron should be equal to the

constant parameters ℎ𝑓y. But as the optimization is done with gradient descent, there

will always be a numerical error related to the chosen hyper-parameters.

When a high precision is required, the number of iterations is a parameter of high

importance. And even with sophisticated optimizers, it helps to run training more than

once with refined initial learning rates. The present model shows perfect scores for

target relative errors higher than 10-3 (𝑠0.1% = 100%). This score decreases for

smaller target relative errors (e.g. 𝑠0.01% = 92%). The precision achieved here can

also be deduced from the weights and the bias, calculated with a relative error of the

order 10-4 (Table 1). Values of the tolerance, used to state the convergence (and thus

affects the number of epochs), make a difference on the results when coarse. But there

is a limit under which its importance is forsaken (Table 1).

In a more general case, if one was not aware of this linear relation, a neural network

with a bigger capacity could have been used. This increase of capacity can sometimes

result in lower performance [11], [12] as more local minima may appear.

4

Nevertheless, this simple calculation allows quantifying the best case expected

precision of a model under a given configuration.

Tolerance Pearson score Accuracy for
relative error

of 0.1%

Accuracy for
relative error

of 0.01%

Mean relative
error on model

weights

Relative error
on bias

Number of
epochs

 𝑅2 𝑠0.1% 𝑠0.01%
〈𝑤𝑖〉𝑖≠0 − ℎ𝑓y

ℎ𝑓y

𝑤0 − ℎ𝑓y

ℎ𝑓y

10-3 0.69274327 0.5% 0.00% 5.6e-1 4.1e-1 2794
10-5 0.99994436 47.8% 5.91% 7.4e-3 5.6e-3 8022
10-7 0.99999978 100% 74.9% 4.7e-4 3.5e-4 8418

10-9 0.99999992 100% 93.1% 2.8e-4 2.1e-4 8797
10-11 0.99999993 100% 91.6% 2.7e-4 2.1e-4 8798

Table 1: Evolution of relative error with respect to tolerance and number of epochs.

The approximation of a model with nonlinear relations surely needs the use of

neural networks with bigger capacities. Several architectures are tested, and fine

tuning applied to achieve the highest precisions. A perfect score can be obtained for a

relative error up to 5%. But at 𝑒 = 1%, 𝑠1% = 96% at most (Figure 1).

Figure 1: Evolution of accuracy w.r.t target relative error for dense neural networks

of 8x16 units, 8x128 units and 1x32 with polynomial features.

Improving the performance of a model becomes more and more costly. One of the

solutions to overcome this limit is second order features (square and cross products).

Such approaches are used for simpler models but become also justified for neural

networks to achieve better performance (𝑠0.1% > 99%) with architectures of much

lower capacity (Figure 1).

4 Conclusions and Contributions

Neural networks are underused as universal approximators for engineering models

due to the lack of competitivity against numerical models and the assumption that

each system is unique. However, from another angle, they can make many studies

easier, especially for multi-dimensional problems that share similar characteristics. If

DNN 8x16

DNN 8x128

DNN 1x32 +

poly. features

Target relative error 𝑒

A
cc

u
ra

cy
 𝑠

𝑒

5

the complexity of engineering systems varies a lot for each problem, the process of

training a neural network remains the same.

Using neural networks to predict deterministic results might appear to be odd, as they

are mostly evaluated from a statistical point of view. But the nature of the applications

justifies this use. One difficulty that can be encountered though and that this paper

tries to evaluate is the precision of predictions. We notice that even with parameter

optimization, capacity variation of networks and fine tuning, there is always a

numerical limit to the precision that becomes difficult to overcome.

As shown here, quantifying the relative error for each test case may lead to

conclusions different from when the reasoning is over usual metrics such as distance

indicators (MSE) or correlation indicators (R2). And as it can be expected, relative

errors are higher for results with lower amplitudes. If the studied system requires high

precision that cannot be provided by a neural network, the robustness of this network

used for approximation should be quantified and taken into account (in the safety

coefficients for example).

Polynomial features are among the ways that were proven to easily increase efficiency

of machine learning models. Such technic is usually not convenient for learning

models with large numbers of inputs (computer vision or time series), but it can be

justified for problems with few parameters like the use-cases described in this work.

Despite all the technics used to improve the models, most of the time, it is not yet

possible to achieve perfect accuracy for small target relative errors, even for problems

with known global minima. Reaching perfect accuracy is a feedforward goal that

would encourage considering neural networks as a way to automate solving complex

physical models.

References

[1] J. Willard, X. Jia, S. Xu, M. Steinbach, and V. Kumar, ‘Integrating Scientific

Knowledge with Machine Learning for Engineering and Environmental

Systems’, ArXiv200304919 Phys. Stat, Jul. 2021

[2] S. Lathuilière, P. Mesejo, X. Alameda-Pineda, and R. Horaud, ‘A

Comprehensive Analysis of Deep Regression’, IEEE Trans. Pattern Anal. Mach.

Intell., vol. 42, no. 9, pp. 2065–2081, Sep. 2020, doi:

10.1109/TPAMI.2019.2910523.

[3] C. Sharpe, T. Wiest, P. Wang, and C. C. Seepersad, ‘A Comparative Evaluation

of Supervised Machine Learning Classification Techniques for Engineering

Design Applications’, J. Mech. Des., vol. 141, no. 12, Oct. 2019, doi:

10.1115/1.4044524.

[4] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

[5] K. Hornik, M. Stinchcombe, and H. White, ‘Multilayer feedforward networks

are universal approximators’, Neural Netw., vol. 2, no. 5, pp. 359–366, Jan.

1989, doi: 10.1016/0893-6080(89)90020-8.

[6] D.-X. Zhou, ‘Universality of Deep Convolutional Neural Networks’,

ArXiv180510769 Cs Stat, Jul. 2018

6

[7] A. Kratsios and E. Bilokopytov, ‘Non-Euclidean Universal Approximation’,

ArXiv200602341 Cs Math Stat, Nov. 2020

[8] J.-A. Goulet, Probabilistic Machine Learning for Civil Engineers. Cambridge,

MA, USA: MIT Press, 2020.

[9] X. Cheng, B. Khomtchouk, N. Matloff, and P. Mohanty, ‘Polynomial Regression

As an Alternative to Neural Nets’, ArXiv180606850 Cs Stat, Apr. 2019

[10] D. P. Kingma and J. Ba, ‘Adam: A Method for Stochastic Optimization’,

ArXiv14126980 Cs, Jan. 2017

[11] Y. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y. Bengio,

‘Identifying and attacking the saddle point problem in high-dimensional non-

convex optimization’, ArXiv14062572 Cs Math Stat, Jun. 2014

[12] H. Kwak and B.-T. Zhang, ‘Understanding Local Minima in Neural Networks

by Loss Surface Decomposition’, Feb. 2018

