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Abstract 
 

Accompanied by the fast evolution of additive manufacturing, multi-scale porous 

structures are gaining ever-increasing popularity in high-performance structure design. 

Given the connectivity requirement imposed on neighbouring cellular microstructures 

for their successful printing, we propose in the current work a criterion for 

connectivity evaluation based on Dijkstra’s shortest path algorithm, and a unit cell 

generation model is established with the aid of the Generative Adversarial Network 

(GAN) approach. A family of 9 lattice units satisfying a prescribed connectivity 

condition is subsequently optimized under various load conditions. Lastly, a multi-

scale structural optimization design approach is developed under the neural network 

framework, and the best combination of the a priori optimized lattice units is found. 

The effectiveness of the proposed protocol is verified on a series of numerical 

examples considering structural stiffness/toughness. 

Keywords: Additive manufacturing, multi-scale, connectivity, GANs, structural 

optimization. 
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1  Introduction 
 

It is well recognized that multi-scale porous structure outperforms mono-scale ones 

in the sense of stability and multi-functionality, and is thus enjoying overwhelming 

popularity in structural design. Early works in multi-scale structure design generally 

requires prohibitive computational cost since local materials are optimized 

concurrently according to the local stress states. To circumvent this issue, Xia 

constructed a reduced-order database model viewing the local material optimization 

process as a generalized constitutive behaviour using separated representations [1]. It 

is however noticed that the geometric connectivity was not guaranteed by the 

optimized local microstructure. Later, Duriez addressed this issue through adaptive 

transmission zones which limit the loss of performance [2]. 

These days, along with the rapid development of computer science, machine 

learning algorithms find a more in-depth application recently in the field of 

computational mechanics, ranging from structural analysis to optimal design. Ulu et 

al. established a mapping between the loading configurations and the optimal 

topologies [3]. Most recently, Zhang et al. developed a framework for topology 

optimization via neural reparameterization (TONR), and dealt with such optimization 

problems as stress-constraint design, natural frequency maximization, and heat 

conduction system design [4]. 

In this current work, the authors intend to couple the machine learning algorithm 

with the multi-scale structure design, and the capability of machine learning 

algorithms in dealing with image information is leveraged for imposing geometric 

connectivity of cellular materials. The proposed method also takes advantage of 

neural networks in accelerating mechanical analysis.  
 

2  Methods 
 

2.1 Connectivity characterization via the Dijkstra’s shortest path algorithm 

 

 

Figure 1. Schematic of microstructure discretization and transmission points. 

Most conventional topology optimization approaches rest on the Solid Isotropic 

Material with Penalization (SIMP) material assumption, which may lead to undesired 

“gray elements”. To alleviate the resulting uncertainty in the fabrication process, the 

current work focuses on the 0-1 solution of topology optimization, and the continuity 

of the structure is readily assessed. Borrowing the Dijkstra’s algorithm, we define the 
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distance between two neighbouring elements as 1 if both elements are solid (with a 

material pseudo density of 1), whilst being INF (a relatively large value) if otherwise. 

Supposing a discrete finite element model composed of N elements, a N×N initial 

distance matrix D is set according to the prescribed element densities. By referring to 

the Dijkstra’s shortest path algorithm, the entry Dij is finally updated by the Dijkstra’s 

shortest path between two elements, ei and ej. The matrix should hence be able to 

characterize the connectivity status of the cellular structure. 

 

Figure 1. presents a microstructure design domain discretized by a 11×11 grid, and 

two transmission points are assigned on each edge where the connectivity constraints 

are imposed between neighbouring microstructures. For instance, to ensure the X-

direction connectivity, the transmission points numbered by ②/⑦must be accessible 

to ⑥/⑧. Figure 2. showcases two Dijstra’s distance calculations on two Chinese 

characters “西” and “北”. It is found that transmission points ②-③ in “西” is 

connective since the Dijstra’s shortest distance is 20, while transmission points②-⑥ 

in “北” is disconnected given the infinitive value. 

 

 
Figure 2. Schematic of the Dijkstra’s distance calculation on two of the transmission 

points on two Chinese characters. 

  

2.2 Generative adversarial network.  

The generative adversarial networks are composed of a generative and a 

discriminative network. Its core idea lines in the adversarial training process in which 

the former network intends to increase the error rate of the discriminative network, 

and the latter seeks to distinguish candidates produced by the generator from the true 

data distribution. In the current work, the generator G takes a vector of random noise 

as the input and upsamples it to an image, i.e., a 0-1 valued microstructure image. The 

discriminator D, on the other hand, is a convolutional network that categorizes the 

images fed to it. In this current work, this binomial classifier labels images as 

“connective” or “disconnected”. In the training process, both networks try to optimize 

a different and opposing objective function, or loss function, in a zero-sum game. 

Readers are noticed that, while training a GAN we do not train the generator and 

discriminator simultaneously. In real practice, when the discriminator is trained, the 

generator values are held constant, and vice versa. Figure 3. displays the structure of 

the GANs. 
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Figure 3. Schematic of GANs for microstructure connectivity prediction. 

 

3  Results 
 

 
Figure 4: Generate adversarial networks‘ training curve. 

In Figure 4., the red line depicts the averaged value of the predicted authenticity by 

the discriminator D, with the ground truth instances being the lattice unit cells 

satisfying the connectivity constraint. Contrarily, the blue line refers to the predicted 

authenticity where the generated sample from G is inputted. Theoretically, the closer 

the output of the discriminator D is to 1, the better the training effect is. However, the 

two networks are in general desired to perform almost equally such that neither of the 

networks overpowers the other. As clearly observed, with the continuous 

improvement of the quality of the samples generated by the generator G, the 

discriminator D encounters more and more challenges to distinguish the fed sample 

from G, i.e., D(G) to the authenticity, and the training of the networks stops is finally 

stopped at the Nash equilibrium asymptote 0.5 (theoretical solution). Figure 5 

demonstrates a group of 15 samples obtained from the trained generator, and it is 

noted that the connectivity constraint is automatically imposed. 
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Figure 5. Microstructures randomly generated by the trained Generator G. 

 

Despite the connectivity ensured by the GANs, the best topology of cellular lattice 

needs to be found such that the load-bearing capacity can be ultimately achieved at a 

structural level. In this work, we have adopted the top-99 line MATLAB codes for the 

prediction of the mechanical performance, i.e., the flexibility/stiffness, of each lattice 

structure [5]. By combining with the trained neural network, the optimal design of the 

lattice unit is carried out. Figure 6. illustrates the optimization procedure in which the 

stiffness along the longitude direction of the lattice cell is maximized. 

 

 
Figure 6. Iteration histories of compliance and volume fraction during optimization. 

 

In real structural design, a part must experience different stress/load conditions at 

different locations. For this reason, we intend to generate a group of lattice cells that 

can be optimal in different cases. Choosing the compliance ratio of two orthogonal 

directions as a key factor, a group of 9 optimal unit cells is obtained a priori. Each 

lattice unit cell will be indexed by an integer from 1 to 9. The corresponding 

equivalent elastic matrices are pre-calculated and called during the optimization. 

Figure 7 (a) demonstrates the right half part of an optimized MBB beam using the 9 

connectable lattice units, under a vertical traction force at the midspan of the beam. 
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The red lines in (b) demonstrate the principal stiffness directions of each lattice unit 

cell, and this is in perfect accordance with the load path. 

 
Figure 7 Optimal multi-scale MBB beam based on connectable lattice cluster. 

 

4  Conclusions and Contributions 
 

We report in this work a systematic approach to the optimal design of multi-scale 

lattice structures, considering the connectivity of neighbouring unit cells. The 

Dijkstra's shortest path algorithm is firstly coupled with the Generative Adversarial 

Networks in the design of microstructures, alleviating readily the long-standing 

disconnectivity issue that causes the failure of 3D printing. We then established a 

neural network metamodel for structural analysis, and sensitivity information is 

derived by the back propagation algorithm once the network is trained. The optimized 

cellular structures satisfying the connectivity constraints are finally employed for 

macroscopic structure design. The manufacturability of the final design has been 

lastly confirmed by additive manufacturing. 
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