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Abstract 
 
Constrained mixture models of soft tissue growth and remodelling enable one to 
simulate many evolving conditions in health, disease, and its treatment, but they tend 
to be computationally expensive. Here, we present results from a new rate-
independent 3D computational formulation for soft tissue growth and remodelling 
based on a mechanobiologically equilibrated solution, which allows computation of 
fully resolved long-term responses as well as quasi-equilibrated evolutions for which 
imposed perturbations are slow relative to the adaptive process. The formulation 
retains mechanobiologically important properties, like different material properties 
and rates of turnover of the individual constituents that define the tissue. The 
associated implicit numerical algorithm at stress integration points is compact and 
easily implemented within existing finite element solvers. Its consistent linearization 
yields quadratic convergence during global finite element iterations, with 
computational efficiency comparable to that for finite strain elasticity. Numerical 
simulations of complex situations for arterial mechanics, including the enlargement 
of aneurysms, demonstrate its computational efficiency and robustness. We submit, 
therefore, that constrained mixture models of growth and remodelling can now be 
used more widely. 
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1  Introduction 
 

A distinguishing feature of soft biological tissues is their ability to grow (change mass) 
and remodel (change microstructure) in response to diverse stimuli. Multiple 
approaches for mathematically modelling such growth and remodelling (G&R) have 
proved useful in describing diverse situations for many different tissues [1]. In 
particular, a constrained mixture model has proved useful when there is a need to 
account for the different material properties and rates of turnover of the individual 
constituents that define the tissue [2]. The heredity integral-based formulation of this 
mixture approach is computationally expensive, however, with past implementations 
focused on simple geometries. 

 

Herein, we show computational advantages for illustrative cases by exploiting a 
recent concept of mechanobiologically equilibrated G&R [3,4]. The kinematics 
accounts for general three-dimensional G&R with finite deformations and possible 
rotations. This 3D framework can be implemented easily within existing finite 
element solvers, though with a non-symmetric tangent stiffness matrix. This new 
formulation enables fast, reliable finite element simulations of many G&R problems 
while accounting for critical differences in the behaviour of the different constituents 
that exist in soft tissues as, for example, their different turnover characteristics [5]. 

 

Local balance equations at both constituent and mixture levels are first reviewed 
and then particularized under mechanobiological equilibrium conditions. When these 
algebraic equations are complemented with an equilibrium value for a given stimulus 
function for mass production, they furnish a set of equations to compute fully resolved 
states at any material point and G&R time 𝑠𝑠. 
 
2  Methods 
 

Consider an in vivo loaded configuration 𝜅𝜅 of a soft tissue, modeled here as a 
constrained mixture [2] of multiple solid constituents 𝛼𝛼 = 1, . . . , N (e.g., various cell 
types and extracellular matrix proteins). One key difference between conventional and 
biological materials is the ability of the latter to grow in response to diverse stimuli, 
which one can describe with mass balance relations in spatial form 
 

𝑑𝑑𝜌𝜌𝛼𝛼

𝑑𝑑s
+ 𝜌𝜌𝛼𝛼∇ · 𝐯𝐯𝛼𝛼 = 𝑚𝑚𝛼𝛼 − 𝑛𝑛𝛼𝛼 = 𝑛𝑛𝛼𝛼(Υ𝛼𝛼 − 1) , 𝛼𝛼 = 1, . . . , N              (1) 

 

where 𝜌𝜌𝛼𝛼 is the homogenized mass density, with 𝜌𝜌 = ∑𝜌𝜌𝛼𝛼 the mass density of the 
tissue, 𝐯𝐯𝛼𝛼 = 𝐯𝐯 the common velocity, and 𝑚𝑚𝛼𝛼 > 0 and 𝑛𝑛𝛼𝛼 > 0 rates of mass density 
production and removal. Furthermore, Υ𝛼𝛼 = 𝑚𝑚𝛼𝛼/𝑛𝑛𝛼𝛼 > 0 in Equation (1) defines a 
stimulus function that enhances (> 1), reduces (< 1), or balances (= 1) mass 
production with respect to removal, which is to be correlated to specific stimuli (e.g., 
stress, stretch, or their rates). 
 

Spatial linear momentum balance relations read 
 

𝜌𝜌𝛼𝛼
𝑑𝑑𝐯𝐯
𝑑𝑑s

= ∇ · 𝝈𝝈t𝛼𝛼 + 𝜌𝜌𝛼𝛼𝐛𝐛𝛼𝛼 , 𝛼𝛼 = 1, . . . , N                               (2) 
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where 𝝈𝝈t𝛼𝛼 is the Cauchy stress tensor and 𝐛𝐛𝛼𝛼 the constituent body force, with 
additional exchanges of momentum typically negligible in soft tissue G&R. 
Summation of mass (1) and momentum (2) balances over all constituents yields 
associated relations for the mixture. 
 

Considerer here cases where the tissue adapts rapidly relative to the imposed 
perturbations (e.g., slowly evolving aneurysms or slow arterial wall thickening in 
hypertension). The growth evolution becomes quasi-equilibrated, with Υ𝛼𝛼 ≈ 1 in 
Equation (1) to be solved quasi-statically along with mechanical equilibrium 
(Equation (2) with 𝑑𝑑𝐯𝐯/𝑑𝑑𝑠𝑠 ≈ 𝟎𝟎), constitutive, and compatibility equations subject to 
boundary conditions [4,5]. 
 

During a mechanobiologically equilibrated evolution of this type, a deformation 
gradient 𝐅𝐅ℎ describes deformations between an initial in vivo configuration 𝜅𝜅𝑜𝑜 and an 
evolved one 𝜅𝜅ℎ, where natural configurations of different constituents either evolve 
(𝛼𝛼 = 𝜉𝜉, which turnover continuously) or remain fixed (𝛼𝛼 = 𝜁𝜁). The equilibrated 
Cauchy stress for the mixture, computed from constituent-specific strain energies and 
deformation gradients, reads 
 

𝝈𝝈ℎ = �𝝈𝝈tℎ𝛼𝛼 = �𝜙𝜙𝜁𝜁𝝈𝝈ℎ
𝜁𝜁 + �𝜙𝜙𝜉𝜉𝝈𝝈ℎ

𝜉𝜉 − 𝑝𝑝ℎ𝐈𝐈                                    (3) 
 

where, importantly, the mass fractions 𝜙𝜙𝛼𝛼 depend only on the Jacobian 𝐽𝐽ℎ = det𝐅𝐅ℎ, 
𝝈𝝈ℎ
𝜁𝜁  represents an elastic contribution, and 𝝈𝝈ℎ

𝜉𝜉  remains constant (except for possible 
rotations). Hence, only the equilibrated Lagrange multiplier 𝑝𝑝ℎ at the current in vivo 
state remains to be determined. Importantly, an equilibrated stimulus function for 
constituents 𝜉𝜉 driven by changes in stress relative to homeostatic baseline values 
introduces a constraint for the stress in Equation (3), from which 
 

Υℎ�𝝈𝝈ℎ(𝑝𝑝ℎ)� = 1 ⇒  𝑝𝑝ℎ                                                 (4) 
 

Finally, tangent tensors for load-bearing constituent stresses, including 𝑝𝑝ℎ, all of them 
evolving consistent with the mechanobiologically equilibrated constraint Υℎ = 1, 
yield an exact linearization of the rate-independent G&R formulation, which can be 
implemented easily within existing finite element solvers (we implemented it as a user 
material plugin in the open source software FEBio), though with non-symmetric 
(Lagrangian) tangent contributions arising from the constant Cauchy (pre)stresses 𝝈𝝈ℎ

𝜉𝜉 . 
 
3  Results 
 

We specialize the previous rate-independent constrained mixture framework to G&R 
experienced by arteries during maturity, for which the main load-bearing constituents 
are an amorphous elastin-dominated matrix (𝜁𝜁 = 𝑒𝑒), circumferentially oriented 
passive smooth muscle (𝜉𝜉 = 𝑚𝑚), and circumferentially, axially, and diagonally 
oriented fibrillar collagen (𝜉𝜉 = 𝑐𝑐). To compute constituent-specific equilibrated 
stresses in Equation (3), we consider a four-fibre family model, with a neo-Hookean 
stored energy function for elastin and Fung-exponentials for the other oriented passive 
constituents. Furthermore, the stimulus function in Equation (4) is assumed to depend 
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on local changes in the volumetric Cauchy stress at the tissue level relative to its initial 
homeostatic value. 
 

Elastin, however, may be removed (or degraded) in aneurysms. In particular, Fig. 
1 shows the effects of elastin degradation, either axisymmetric (left) or asymmetric 
(right), on an arterial segment under initial in vivo conditions (pressurized and axially 
stretched; top). As it can be seen, localized losses of elastic fibre integrity result in 
growth and remodelling responses that cause marked dilatations of the aortic wall. 
Shown are deformed meshes and contour plots of circumferential stiffness, a 
particularly important indicator of aneurysmal presence, computed for a maximum 
localized degradation of elastin of 60% for the axisymmetric aneurysm and 75% for 
the asymmetric one, both showing also marked localized increases in mass (i.e., 
volume) ratios. Each finite element simulation was advanced quasi-statically and 
computed in 10 incremental time steps, which showed quadratic rates of convergence 
during global Newton-Raphson iterations and elapsed CPU times ≈ 1min on a single 
CPU processor Intel® Xeon® E5 at 3GHz in a Workstation Dell Precision 5810 with 
32GB RAM. The FE model comprised N𝑟𝑟N𝜃𝜃N𝑧𝑧 = 1 × 20 × 20 = 400 displacement-
based 3D quadratic elements with full 3 × 3 × 3 Gauss integration. 
 

 
 

Figure 1: Initial (top) and evolved in vivo states for an arterial segment with 
axisymmetric (left) or asymmetric (right) loss of elastic fibre integrity, with constant 

blood pressure and fixed axial displacements at the ends. 
 
4  Conclusions and Contributions 
 

In this work, we presented results computed with a new constrained mixture 
formulation that enables computational tractability while retaining the biologically 
important characteristic of individual constituent properties, including rates of 
production and removal. This efficiency was achieved by using a 
mechanobiologically equilibrated framework, which avoids the heredity integral basis 
of a full constrained mixture model while providing precise information on the long-
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term “relaxed” solution [3,6]. This approach is also particularly useful when time 
scales associated with G&R are shorter than those associated with perturbations in 
mechanical or chemical stimuli to which the cells respond [4,6]. Importantly, the 
formulation is easily implemented within available finite element solvers, though for 
non-symmetric tangent stiffness matrices. Results were presented for a modified open 
source code, FEBio, with solutions revealing quadratic convergence with 
computational efficiency comparable to that for a nonlinear hyperelastic computation, 
though here for the simultaneous solution of mechanical and mechanobiological 
equilibrium at load steps that capture evolving geometries, compositions, and 
properties of interest. 
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