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Abstract 
 
The characterization of the multiaxial mechanical behaviour of polymers has been 
challenging, as the vast number of proposed models demonstrates. These models are 
based on analytical expressions of sate variables (invariants or principal stretches). 
Machine learning brings new tools to characterize polymers from macroscopic 
experiments. However, classical machine learning modelling as classical Neural 
Networks have several drawbacks, as the need for extensive data, the lack of 
robustness, and the lack of compliance with physical principles. In polymers, physics-
based machine learning brings the best of both worlds by performing data-driven 
characterization considering physical principles and reducing the number of needed 
tests. In this work, using a simple procedure for crossing scales, we present a new 
data-driven procedure to characterize the entropic behaviour of a representative 
macromolecule directly from any single macroscopic test on the polymer by solving 
a linear system of equations. This single test may be homogeneous like a tensile test 
or a biaxial test, or it can also be a nonhomogeneous test where the deformation map 
is measured through digital image correlation and the cell load is recorded. The 
resulting macromolecule behaviour fully characterizes the reversible behaviour of the 
polymer and can be used in an efficient manner in finite elements to perform accurate 
simulations of polymers.  
 
Keywords: hyperelasticity, B-splines, machine learning, polymers 
 

 
 

Data-driven macro-micro-macro modelling of 
rubber-like materials 

 
F.J. Montans1,2, V.J. Amores1, I. Ben-Yelun1, L. Moreno1 and 

J.M. Benítez1 
 

1E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad 
Politécnica de Madrid, Spain 

2Department of Mechanical and Aerospace Engineering, 
University of Florida, USA 

 
 

Proceedings of the Fourteenth International Conference on  
Computational Structures Technology 
Edited by B.H.V. Topping and J. Kruis 

Civil-Comp Conferences, Volume 3, Paper 2.2 
Civil-Comp Press, Edinburgh, United Kingdom, 2022, doi: 10.4203/ccc.3.2.2 

Civil-Comp Ltd, Edinburgh, UK, 2022 
 
 



2 
 

1  Introduction 
 
The forces in a polymer are a result of a change of the entropy of the macromolecules 
(chains) [1].  This observation brought the classical statistical theory of polymers. This 
theory resulted in the Neo-Hookean model and in the appearance of the first invariant 
𝐼𝐼1 = 𝜆𝜆12 + 𝜆𝜆22 + 𝜆𝜆32 of the right Green-Cauchy deformation tensor 𝑪𝑪, where 𝜆𝜆𝑖𝑖 are the 
principal stretches. The Neo-Hookean statistical model results in a stored energy as  

𝛹𝛹(𝐼𝐼1) =
𝜇𝜇
2

(𝐼𝐼1 − 3) (1) 

where µ is the shear modulus. Since polymers are considered almost incompressible, 
we have 𝜆𝜆1𝜆𝜆2𝜆𝜆3 = 1, and for an in-plane test (any biaxial test, including uniaxial, 
equibiaxial and pure shear tests as particular cases), the first Piola (nominal) stress for 
a polymer is 
 

𝑃𝑃𝑖𝑖 =
𝜕𝜕𝜕𝜕(𝜆𝜆1,𝜆𝜆2,𝜆𝜆3)

𝜕𝜕𝜆𝜆𝑖𝑖
−
𝜆𝜆3
𝜆𝜆𝑖𝑖
𝜕𝜕𝜕𝜕(𝜆𝜆1,𝜆𝜆2,𝜆𝜆3)

𝜕𝜕𝜆𝜆3
;   𝑖𝑖 = 1,2 (2) 

It can be easily shown that the Neo-Hookean model is equivalent to a full network 
model in which each representative chain has the stored energy 

𝜓𝜓(𝛬𝛬𝑐𝑐ℎ) =
3𝜇𝜇
2

(𝛬𝛬𝑐𝑐ℎ − 1)  𝑤𝑤𝑤𝑤𝑤𝑤ℎ  𝛬𝛬𝑐𝑐ℎ = 𝑪𝑪: (𝒓𝒓𝑐𝑐ℎ ⊗ 𝒓𝒓𝑐𝑐ℎ) (3) 

where 𝒓𝒓𝑐𝑐ℎ is the direction of the chain at hand and Λ𝑐𝑐ℎ ≡ (𝜆𝜆𝑐𝑐ℎ𝐶𝐶 )2 is the affine squared 
stretch of the chain. The total energy is obtained by integration in the microsphere Ω  
(i.e. integrating in all directions) as Ψ = 1

Ω
∫ 𝜓𝜓𝜓𝜓Ω. Then, by simply noting that 

1
𝛺𝛺
� 𝛬𝛬𝑐𝑐ℎ𝑑𝑑𝑑𝑑 =

𝐼𝐼1
3

 
𝛺𝛺

 (4) 

we get the result in Eq. (1). Statistical models that account for the limited extensibility 
of chains, which include the inverse Langevin function, are written also in terms of 
the first invariant only, the same as the 8-chain (Arruda-Boyce) model. In this case, 
we can write a general form of the type Ψ(𝐼𝐼1), and Eq. (2) is also obtained through 
the chain rule by  
 

𝜕𝜕𝜕𝜕(𝐼𝐼1(𝜆𝜆1,𝜆𝜆2, 𝜆𝜆3))
𝜕𝜕𝜆𝜆𝑖𝑖

=
𝜕𝜕𝜕𝜕(𝐼𝐼1)
𝜕𝜕𝐼𝐼1

𝜕𝜕𝐼𝐼1
𝜕𝜕𝜆𝜆𝑖𝑖

 (5) 

Remarkably, if we assume a stored energy of the form Ψ(𝐼𝐼1), we can uniquely 
determine the behaviour of this polymer from a single test using our WYPiWYG 
(What-you-prescribe is what-you-get) approach [2]. That technique has been used to 
model even anisotropic materials [3, 4]. However, since Mooney’s works, it has 
repeatedly noted that functions of the form  Ψ(𝐼𝐼1) fail to represent the polymer 
behaviour under a general deformation mode. Rivlin introduced the more general 
functional form Ψ(𝐼𝐼1, 𝐼𝐼2). Characterizing the general form Ψ(𝐼𝐼1, 𝐼𝐼2) from a full set of 
experiments is a quite simple task, because in essence, this is a simple problem of 
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determining two manifolds of two variables that fully represent the behaviour of the 
polymer under any deformation mode, namely 𝑃𝑃1(𝜆𝜆1,𝜆𝜆2) and  𝑃𝑃2(𝜆𝜆1, 𝜆𝜆2). However, 
the amount of experimental data needed for this task is quite large, since different 
biaxial tests with different ratios would need to be performed, and the model gives no 
much more information than the raw experimental data. Indeed, model-free 
techniques may be used in this case. 
 

The purpose of the rest of the paper is to show that, learning the proper state 
variable, from a single macroscopic test, as a tensile test or a nonhomogeneous test, 
the behaviour of the macromolecule can be determined and then used to predict the 
behaviour of the polymer in a finite element program under any deformation type. 
 

 

2  Methods 
 
The first ingredient of the proposed approach is to use the proper state variable. With 
the procedures used in this work, it is possible to determine that the micro-macro state 
variable link for determining the chain stretch, which in the classical statistical theory 
is Λ𝑐𝑐ℎ = 𝑪𝑪: (𝒓𝒓𝑐𝑐ℎ ⊗ 𝒓𝒓𝑐𝑐ℎ), and which resulted in the first invariant for 
phenomenological models, is not the best choice, please refer to [5]. Indeed, it can be 
shown and learned from experimental data and theoretical grounds that a much better 
proposal is λ𝑐𝑐ℎ = 𝑼𝑼: (𝒓𝒓𝑐𝑐ℎ ⊗ 𝒓𝒓𝑐𝑐ℎ), where 𝑼𝑼 = +√𝑪𝑪 is the right stretch tensor and is 
the chain stretch. If the statistical theory is applied with this micro-macro link, the 
“Neo-Hookean” model (note that in this case is not a Neo-Hookean model because 
the shear stress is not linear in terms of the amount of shear) would be –cf. Eq.(3) 

𝜓𝜓�𝜆𝜆𝑐𝑐ℎ� =
3𝜇𝜇∗

2 �𝜆𝜆𝑐𝑐ℎ2 − 1�  𝑤𝑤𝑤𝑤𝑤𝑤ℎ  𝜆𝜆𝑐𝑐ℎ
2 = 𝑼𝑼: (𝒓𝒓𝑐𝑐ℎ ⊗ 𝒓𝒓𝑐𝑐ℎ) (6) 

Unfortunately, in this case the integral in the micro-sphere must be performed 
numerically, for example employing the Bazant-Oh integration rule. The terms in Eq. 
(2) are 

𝜕𝜕𝜕𝜕(𝑼𝑼)
𝜕𝜕𝜆𝜆𝑖𝑖

=
1
𝛺𝛺
�

𝜕𝜕𝜕𝜕�𝜆𝜆𝑐𝑐ℎ(𝒓𝒓𝑐𝑐ℎ,𝑼𝑼)�
𝜕𝜕𝜆𝜆𝑐𝑐ℎ(𝒓𝒓𝑐𝑐ℎ,𝑼𝑼)

𝜕𝜕𝜆𝜆𝑐𝑐ℎ(𝒓𝒓𝑐𝑐ℎ,𝑼𝑼)
𝜕𝜕𝜆𝜆𝑖𝑖𝛺𝛺

𝑑𝑑𝑑𝑑 (7) 

Remarkably, this model, using only one constant, namely 𝜇𝜇∗ (which value can be 
shown to be 𝜇𝜇∗ = 0.7𝜇𝜇), brings the correct nonvanishing slope in Mooney plots and 
the correct slope in the transverse axis in biaxial tests. The predictive power of this 
“Neo-Hookean” model for multiaxial loading, is far better than the classical Neo-
Hookean model, despite also having a single constant with an equivalent physical 
meaning. 
Motivated on this theory, one may propose a general chain function of the type 
𝜓𝜓�λ𝑐𝑐ℎ�, to be later integrated numerically during finite element simulations, given the 
deformation gradient (in practice the principal stretches) at the material routine level. 
Machine Learning algorithms just need to learn this function from any single 
macroscopic test. We use B-splines as a representation basis for this function because 
derivatives are immediate; indeed, we determine the derivatives. If we assume that 
this function is known, we can write 
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𝑃𝑃𝑐𝑐ℎ(𝜆𝜆𝑐𝑐ℎ) ≔
𝜕𝜕𝜕𝜕(𝜆𝜆𝑐𝑐ℎ)
𝜕𝜕𝜆𝜆𝑐𝑐ℎ

= �𝑁𝑁𝑖𝑖(𝜆𝜆𝑐𝑐ℎ)𝑃𝑃�𝑐𝑐ℎ𝑖𝑖 = [𝑁𝑁1(𝜆𝜆𝑐𝑐ℎ), … ,𝑁𝑁𝑛𝑛𝑛𝑛(𝜆𝜆𝑐𝑐ℎ)] �
𝑃𝑃�𝑐𝑐ℎ1
⋮

𝑃𝑃�𝑐𝑐ℎ𝑛𝑛𝑛𝑛
� 

𝑛𝑛𝑛𝑛

𝑖𝑖=1

 (8) 

where nv is the number of vertices in the B-spline, �𝜆𝜆𝑐𝑐ℎ𝑖𝑖,𝑃𝑃�𝑐𝑐ℎ𝑖𝑖(𝜆𝜆𝑐𝑐ℎ𝑖𝑖)� are the vertices 
to be determined and 𝑁𝑁𝑖𝑖(𝜆𝜆𝑐𝑐ℎ) are the B-spline interpolation functions. Then, for a 
general biaxial test, after a little algebra, we get (see [7]) the following expression for 
the nominal stress in each i=1,2 axis 

𝑃𝑃𝑖𝑖 = ��𝑟𝑟𝑐𝑐ℎ𝑗𝑗𝑗𝑗2 − 𝑟𝑟𝑐𝑐ℎ𝑗𝑗32 𝜆𝜆3
𝜆𝜆1
�𝑤𝑤𝑗𝑗[𝑁𝑁1(𝜆𝜆𝑐𝑐ℎ𝑗𝑗, … ,

𝑛𝑛𝑛𝑛

𝑗𝑗=1

𝑁𝑁𝑛𝑛𝑛𝑛(𝜆𝜆𝑐𝑐ℎ𝑗𝑗)] �
𝑃𝑃�𝑐𝑐ℎ1
⋮

𝑃𝑃�𝑐𝑐ℎ𝑛𝑛𝑛𝑛
�       (9) 

where nq is the number of integration points in the sphere and 𝑤𝑤𝑗𝑗 are the weights, and 
𝑟𝑟𝑐𝑐ℎ𝑗𝑗𝑗𝑗 are the i-direction components of the chain at integration point j.  Then, 
establishing a loss function as the error between the predicted 𝑃𝑃𝑖𝑖 and the measured 
value for any given test, and using least squares, we can obtain the vertices 
�𝜆𝜆𝑐𝑐ℎ𝑖𝑖,𝑃𝑃�𝑐𝑐ℎ𝑖𝑖(𝜆𝜆𝑐𝑐ℎ𝑖𝑖)� of the B-spline representing the chain behaviour, by simply solving 
a linear system of equations, i.e. 

𝑨𝑨𝑷𝑷�𝑐𝑐ℎ = 𝒃𝒃 (10) 

where 
𝑨𝑨 = 𝑵𝑵�𝑻𝑻𝑾𝑾𝑵𝑵� + 𝑫𝑫𝑻𝑻𝜴𝜴𝜴𝜴  𝑎𝑎𝑎𝑎𝑎𝑎  𝒃𝒃 = 𝑵𝑵�𝑻𝑻𝑾𝑾𝑾𝑾 (11) 

and  𝑵𝑵��� has components 𝑁𝑁�𝑖𝑖,𝑗𝑗 = ∑ �𝑟𝑟𝑐𝑐ℎ𝑗𝑗𝑗𝑗2 − 𝑟𝑟𝑐𝑐ℎ𝑗𝑗32 𝜆𝜆3
𝜆𝜆1
�𝑤𝑤𝑗𝑗[𝑁𝑁1(𝜆𝜆𝑐𝑐ℎ𝑗𝑗, … ,𝑛𝑛𝑛𝑛

𝑗𝑗=1 𝑁𝑁𝑛𝑛𝑛𝑛(𝜆𝜆𝑐𝑐ℎ𝑗𝑗)] for 
the specific case of uniaxial test (other cases are similar). The matrix 𝑾𝑾  is a diagonal 
matrix to assign different weights if needed to different parts of the domain. The terms 
𝑫𝑫𝑻𝑻𝛀𝛀𝑫𝑫 are smoothing terms to account for possible noisy experimental data. See [7] 
and [8] for further details. The procedure may be easily extended to nonhomogeneous 
tests, where the data needed is the map of strains obtained from digital image 
correlation and the force in the load cell. In this case, the algebra is more elaborate, 
see [8], but the concept remains as simple. Indeed, the problem is also solved through 
a linear system of equations which has the same form as in Eq. (11), but which 
coefficients account also for the finite element formulation. See [8] for further details. 

Figure 1: Reverse-engineered representative polymer chain behavior for Treloar-
Kawabata material 
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3  Results 
 
We have applied the above-mentioned data-driven procedure to predict the behaviour 
of the widely-known Treloar polymer, which is almost identical to the behaviour of 
the Kawabata et al polymer; experimental multiaxial data is given in [9]. We use any 
single test curve from Treloar or Kawabata’s experiments to obtain the chain 
behaviour 𝑃𝑃𝑐𝑐ℎ(𝜆𝜆𝑐𝑐ℎ) given in Eq. (8). This behaviour, using a Kawabata test is depicted 
in Fig. 1. With this reverse-engineered behaviour, we can perform predictions for the 
biaxial tests from Kawabata [9]. Figure 2 shows the excellent predictive power of the 
method.  

 
Figure 2: Predicted biaxial experiments for the Kawabata et al material using the 

reverse-engineered chain behaviour of Figure 1. 

 
Figure 3: Simulation of a perforated plate of Treloar’s material with  𝑃𝑃𝑐𝑐ℎ(𝜆𝜆𝑐𝑐ℎ)  

obtained either from Treloar’s homogeneous test or reverse-engineered from the 
nonhomogeneous experiments. Details for this simulation are given in Ref. [8] 

 
The same approach may be applied to a non-homogeneous experiment. In this case, 

we have performed a virtual test using the previous 𝑃𝑃𝑐𝑐ℎ(𝜆𝜆𝑐𝑐ℎ). Then, from that 
simulation we reversed engineered the 𝑃𝑃𝑐𝑐ℎ(𝜆𝜆𝑐𝑐ℎ)  and repeated the simulation with the 
new 𝑃𝑃𝑐𝑐ℎ(𝜆𝜆𝑐𝑐ℎ). The comparison of both simulation is reproduced in Figure 3. It is 
shown that no appreciable difference is obtained; see details in Ref. [8].  
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4  Conclusions and Contributions 
 
In this work we present a novel non-parametric data-driven formulation to accurately 
model the polymer behaviour under 3D loading. The procedure is based on B-spline 
representation of the behaviour of the representative macromolecule, which is 
obtained from a single load-displacement curve any macroscopic homogeneous 
experiment. Alternatively, it can also be obtained from the hon-homogeneous 
deformation map and the load-displacement curve obtained from digital image 
correlation of any specimen. Remarkably, we simply solve a linear system of 
equations in any case to obtain the characteristic chain behaviour. 
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