

1

Abstract

The Lattice Boltzmann Method (LBM) has been shown to be well suited for
implementation on Graphics Processing Units (GPUs). The benefit of GPU
implementations compared to CPU is in the reduction of computational time, by as
much as 2 orders of magnitude. This staggering difference is due to how computations
for LBM are both explicit and local, meaning that it can make full use of the GPUs
capabilities, like most other cellular automata methods. Although GPUs have a
significantly larger performance in terms of floating-point operations per second
(FLOPS) compared to a CPU it has two significant drawbacks; First, the complexity
of the calculations is limited due to the relative simplicity of the GPU core design
compared to a CPU, secondly, the memory of a GPU is usually limited in comparison,
ranging from a few GB up to ൎ 100 GB for high-end enterprise cards. Because the
LBM method is suitable for execution on GPUs the first point is not necessary to
consider. But the second point becomes a limitation as larger, or more highly resolved
computational domains are of interest. This can be remedied by distributing the
computations across several GPUs executing in parallel. The GPUs share values in
overlapping regions called halo-values that need to be transferred each time step. If
the memory is contiguous then each transfer can be executed as a single efficient
memory transfer call that utilizes the PCI-e lanes efficiently. If this is not the case then
support exists for copying of so-called strided memory which has a constant offset
between values for either single strided (2D) or double strided (3D). These functions
practically result in bad PCI-e lane utilization and to remedy this a method is
proposed, the halo-values are calculated and packed into a contiguous memory buffer
that is then communicated between the GPUs via the PCI-e lanes. It is shown that the
method introduces some additional overhead compared to single GPU execution but
maintains a reasonable 70% performance compared to the single GPU case.

Keywords: lattice Boltzmann method, GPU, multi-GPU programming

MRT Lattice Boltzmann Method on multiple

Graphics Processing Units with halo sharing over
PCI-e for non-contiguous memory

T.O.M. Forslund

Division of Fluid and Experimental Mechanics
Luleå University of Technology, Sweden

Proceedings of the Eleventh International Conference on
Engineering Computational Technology
Edited by B.H.V. Topping and P. Iványi

Civil-Comp Conferences, Volume 2, Paper 8.5
Civil-Comp Press, Edinburgh, United Kingdom, 2022, doi: 10.4203/ccc.2.8.5

Civil-Comp Ltd, Edinburgh, UK, 2022

2

1 Introduction

Figure 1: The halo exchange regions between three GPUs labeled 0, 1 and 2. Grey
values are halos and red are inner nodes

The Lattice Boltzmann Method (LBM) has been shown to be well suited for

implementation on Graphics Processing Units (GPUs) [1, 2, 3]. Benefits of GPU
implementations compared to CPU is in the reduction of computational time, by as
much as 2 orders of magnitude [2]. This staggering difference is due to how
computations for LBM are both explicit and local, meaning that it can make full use
of GPU capabilities, like most other cellular automata methods. Although GPUs have
a significantly larger performance in terms of floating-point operations per second
(FLOPS) compared to a CPU it has two significant drawbacks; First, the complexity
of the calculations is limited due to the relative simplicity of the GPU core design
compared to a CPU, secondly, the memory of a GPU is usually limited in comparison,
ranging from a few GB up to ≈ 100 GB for high-end enterprise cards. Because the
LBM method is suitable for execution on GPUs the first point is not necessary to
consider. But the second point becomes a limitation as larger, or more highly resolved
computational domains are of interest. Therefore the computational domain can be
divided into several separated computational blocks distributed across the GPUs as
graphically illustrated in Figure 1. The values called halos are those that overlap
between the GPUs, these must be transferred at each time step. If the memory is
contiguous, as it can be arranged for this simple linear case presented in Figure 1 then
each transfer can be executed as a single efficient memory transfer call that utilizes
the PCI-e lanes efficiently. If this is not the case then support exists for copying of so-
called strided memory which has a constant offset between values [4] for either single
strided (2D) or double strided (3D). These functions practically result in bad PCI-e
lane utilization and to remedy this a method is proposed, the halo-values are calculated
and packed into a contiguous memory buffer that is then communicated between the
GPUs across the PCI-e lanes. The program structure can be summarized as.

3

1. Halo part
a. Calculate the halos
b. Pack the halos into container memory
c. Send container memory
d. Unpack container

2. Inner blocks
a. Calculate the inner nodes for each GPU

2 Methods

The algorithm is implemented in the Compute Unified Device Architecture (CUDA).
The layout of the program is presented as pseudo-code snippets with comments that
clarify the code operation. The type of LBM model used in this work is a 3-
Dimensional 27 distribution model (D3Q27), for additional details regarding the
model see [5]. The calculation of the halos and main body call the same function
queueCollideAndStream(args) which is the function that combines the streaming and
collision steps as defined in as defined in [1, 5]. The for loop goes across all GPU
devices and queues the halo and transfer calculation for each halo-stream.

Where the boundary condition function queueBC(args) is executed first and as part of
the halo-stream. The varHalo[i] object contains all the variables relevant for the
function and is not a single argument in the actual implementation. The values are
then packed using the packing function and copied between the GPUs using the PCI-
e lanes by using the cudaMemcpyPeerAsync(args) function. After this the values are
unpacked and the next computation can begin. Running in parallel with this
calculation and transfers are the inner calculations, those that are not boundaries or
halos. The calculation procedure here is simply a call to the
queueCollideAndStream(args) function.

4

After this call the function starts over at the beginning of the main loop again.

3 Results

The algorithm is executed on a channel cylinder test case using a workstation with
three RTX8000 GPUs, the geometry and boundary conditions can be seen in Figure
2. The case consists of a constant velocity inlet (green), a zero-gradient outlet (red)
and walls (light blue). The domain is subdivided into three equally large
computational domains for GPU 1 (green), 2 (blue) and 3 (red). A render of the iso-
surfaces of vorticity is presented in Figure 3 which shows that the overlap region
between the computational blocks is well behaved.

Figure 2: The boundary condition and geometry (left), and the division of the
computational blocks (right).

Figure 3: Iso-surface of the magnitude of the vorticity coloured by the velocity
magnitude for the block size of 144ଷ.

The calculation speed of the algorithm is measured in Lattice Updates Per Second
(LUPS). A single RTX8000 GPU performs ≈ 2200 MLUPS with the D3Q27 model,
therefore in the best-case scenario of full parallel execution without bottlenecks a

5

performance of ≈ 6600 MLUPS is expected. The measured performance from the
simulations can be seen in Table 1. As we can see the performance is ≈ 70% of the
expected value for the largest simulation domain.

Table 1: the performance in MLUPS for different base lattice sizes 𝑛ଷ

and total amount of elements 𝑛௘௟.

4 Conclusions and Contributions

In conclusion the PCI-e lane is sufficient for transferring the halo values between the
GPUs without adding any significant bottlenecks to the calculation given that the ratio
of halo-nodes to inner nodes are high. Even if the memory is not contiguous the
packing algorithm adds the possibility of transferring the halos fast between the GPUs
by adding a small memory allocation overhead. As the amount of GPUs utilized
increase the amount of transferred memory compared to the inner memory per GPU
is expected to increase, i.e. the amount of halo nodes in total compared to inner nodes
per GPU. A quick estimation of whether a given application will bottleneck due to
this limitation can be carried out by keeping the expected execution time of the PCI-
e transfers below the execution time for each inner block, i.e. we have the inequality
in Equation (1)

ଶ ௡ℎೌ೗೚

ௌು಴಺
ൌ ௡೔೙೙೐ೝ

ௌಸುೆ

 (1)

Where nhalo is the amount halo elements (in total), SPCI is the memory transfer rate of
the PCI-e lane, ninner is the amount of inner elements per GPU and SGPU is the memory
transfer rate of the GPU. Rearranging we have Equation (2)

ௌಸುೆ

ௌು಴಺
ൌ ௡೔೙೙೐ೝ

ଶ ௡ℎೌ೗೚

 (2)

Assuming cubic elements that are connected across all edges with halos the ratio
ninner/nhalo will scale by the relation in Equation (3)

 ௡೔೙೙೐ೝ

 ௡ℎೌ೗೚
ൌ ሺ ௡೔೙೙೐ೝ

଺ ௡೔೙೙೐ೝ
మ/య௡ಸುೆ

ሻ
 (3)

Where nGPU is the amount of GPUs. Using the 3rd gen PCI-e RTX8000 as an example
the value SPCI/SGPU ≈ 128/672, the value for SPCI is based on the number of PCI-e lanes
which varies depending on the hardware. This gives a required amount of inner nodes
per GPU to avoid bottle-necking in Equation (4)

6

𝑛௜௡௡௘௥ ൌ ሺ଼଴଺ସ ௡ಸುೆ

ଵଶ଼
ሻଷ

 (4)
The maximum amount of inner nodes for an RTX8000 card running a D3Q27 model
is ≈ 200M , therefore we see that approximately 9 cards can operate on the same host
before the PCI-e lanes become a limitation. Changing the connectivity of the GPUs
to a 2D or 1D grid or increasing the amount of PCI-e lanes does not impact the 𝑛ீ௉௎

ଷ
 term, this means that the method is not viable beyond more cards than ≈ 10.

Acknowledgements

This work was made possible by funding from the Swedish Research Council, grant
2017-04390.

References

[1] N. Delbosc, J. L. Summers, A. I. Khan, N. Kapur, and C. J. Noakes, “Optimized
implementation of the Lattice Boltzmann Method on a graphics processing unit
towards real-time fluid simulation,” Computers and Mathematics with
Applications, vol. 67, no. 2, pp. 462–475, 2014.

[2] N. Delbosc, “Real-Time Simulation of Indoor Air Flow Using the Lattice
Boltzmann Method on Graphics Processing Unit,” no. September, 2015.

[3] F. Kuznik, C. Obrecht, G. Rusaouen, and J. J. Roux, “LBM based flow
simulation using GPU computing processor,” Computers and Mathematics with
Applications, vol. 59, no. 7, pp. 2380–2392, 2010.

[4] NVIDIA, “Cuda C Programming Guide,” Programming Guides, no. September,
pp. 1–261, 2015.

[5] K. Suga, Y. Kuwata, K. Takashima, and R. Chikasue, “A D3Q27 multiple-
relaxation-time lattice Boltzmann method for turbulent flows,” Computers and
Mathematics with Applications, vol. 69, no. 6, pp. 518–529, 2015.

