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Abstract 
 
The aim of this study is to investigate the effectiveness of multi-objective 
optimization in solving the time-cost trade-off problem at different project scales. 
For this purpose, the NSGA-II algorithm was used, with the analysis to extend from 
small-scale problems (18 activities) to large-scale ones (up to 4,608 activities). In 
order to check the effectiveness of the multi-objective optimization algorithm, a 
single-objective formulation for cost minimization at specific project durations and 
the corresponding GA algorithm was also developed (both the GA and NSGA-II 
algorithms were developed in the Visual Basic environment). Finally, the same 
problems were solved by a general-use commercial software that employs genetic 
algorithms as a means for optimization. The case studies that were analysed have 
resulted from a benchmark 18-activity network from the literature. This basic 
network was repetitively applied in serial and parallel forms to develop larger 
networks for which the optimal solutions can be determined based on the 
corresponding solutions of the basic network. In this regard, it is feasible to 
realistically assess the performance of the methods under analysis. The comparison 
between the NSGA-II and the GA algorithms indicates that the latter performs 
better in all cases (in a general perspective, the NSGA-II results in deviations from 
50% to 100% higher than those of the simple GA). This is expected as the solution 
space is larger in the first case and includes the whole allowable project duration 
range, while the simple GA searches at a specific project duration every time. On 
the other hand, the single-objective GA needs to be repetitively run at several 
project duration levels in order to develop the Pareto front. The employment of the 
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commercial GA software results in the lowest performance compared to both the 
NSGA-II and the tailor-made GA. This is mainly due to the fact that, as a general 
purpose software, it does not provide the easiness to fine-tuning to the specific 
problem. Nevertheless, it can be considered as a tool for a quick rough 
approximation of the optimal solutions as well as a means of relative performance 
comparison among different case studies. 
 
Keywords: time-cost trade-off, multi-objective optimization, genetic algorithms, 
pareto front. 
 

1  Introduction 
 
The time-cost trade-off (TCT) problem is one of the most well-known problems in 
the field of project management with the two conflicting objectives, the project cost 
and time of completion to compose a distinct bi-objective problem. The TCT 
problem is very interesting from both a practical and a scientific point of view, with 
the latter being a real challenge as it belongs to the NP-hard category of problems 
and, therefore, becomes significantly more difficult to solve as the project grows in 
size [1]. In such cases, the effectiveness of traditional optimization methods is 
reduced, and the application of evolutionary algorithms is preferred. Among such 
approximate methods, genetic algorithms have been widely used to solve the TCT 
problem (e.g., [2]) while other similar methods, like particle swarm optimization 
(PSO), have been tested in more recent years (e.g., [3]). In most cases, however, the 
problem is set up as a single criterion problem (minimization of cost) and is 
repetitively run in order to develop minimum cost schedules at different project 
durations, i.e., the Pareto front. 
 

Besides single-objective optimization, research has also been directed to 
developing the Pareto front in a single run by appropriately modifying the search 
process within the algorithm. Several algorithms have been proposed to optimize the 
TCT problem with the most commonly used being the NSGA-II. Since the problem 
of the bi-objective optimization is far more demanding than the single-objective one, 
existing works have been evaluated in rather small case studies. For example, the 
NSGA-II algorithm has been applied to a 42-activity problem in [4]. The 
CSMOPSO (Combined Scheme-based Multi-Objective Particle Swarm 
Optimization) algorithm has been applied to a classic literature example of 18 
activities in [5], while the TLBO (Teaching-Learning-Based Optimization) is used 
with a project of 64 activities in [6]. In another direction, the work in [7] analyses 
the time-cost-quality trade-off problem by examining the effectiveness of the 
MODE (Multiple Objective Differential Evolution) algorithm via its application to a 
real project of 18 activities.  

 
In general, it could be observed that existing multi-objective optimization 

research has been limited to small to medium-scale problems ([8]), with the largest 
one to include 720 activities ([9]). Within this context, the aim of the current study is 
twofold, first to investigate the efficiency of multi-objective optimization in large-
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scale problems and second to compare the results of such optimization with the 
corresponding results of the single-objective optimization.  

 

2  Methods 
 
When dealing with large problems, there is always the difficulty to develop the exact 
solution of the problem. As such, there is no guarantee that any approximate 
solution converges to the actual one. In order to overcome this limitation, an 
effective way is to develop a large network made by smaller networks that can be 
solved accurately. In such a direction, a basic problem of 18 activities from the 
literature ([10]) is considered. An effective way to escalate the problem size is to 
consider a larger network developed through horizontal (serial) and vertical 
(parallel) additions of the basic project. In this way, the size of the new problem can 
substantially increase while the best solutions are still known or can be inferred. 
Consequently, it is possible to evaluate the effectiveness of alternative optimization 
algorithms in large problems. 
 
 In the present study, the analysis is directed into solving small to large-scale TCT 
problems through multi-objective optimization. For this purpose, five problems will 
be examined consisting of 18, 72, 288, 1,152 and 4,608 activities. These problems 
arise from considering serial and parallel articulations of the basic problem. For 
instance, the 72-activity problem is formed by connecting 4 basic problems 
(2x2x18), while the 4,608-activity problem by connecting 256 basic problems 
(16x16x18).  
 
 The analysis starts with the implementation of the NSGA-II algorithm ([11]) as a 
method of multi-criteria optimization. This algorithm is one of the most well-known 
and effective multi-criteria optimization algorithms, which has been successfully 
applied to various problems. Following, in order to test the effectiveness of the 
algorithm in developing the Pareto front, the same TCT problems are solved for two 
specific durations, Case I (project durations 110, 220, 440, 880 and 1760 
respectively) and Case II (project durations 125, 250, 500, 1000 and 2000 
respectively) as single-goal optimization problems targeting at minimizing cost with 
the use of a genetic algorithm (GA). Both the NSGA-II and the simple GA 
algorithms have been developed in the Visual Basic environment. A third alternative 
for cost minimization at the above specific project durations employs the use of a 
commercial GA optimization software, namely the Palisade Evolver software that 
runs as an add-in of the Excel software. The aim of the comparison is to assess the 
effectiveness of each method and reveal their pros and cons.  
 
3  Results 
 
Figure 1 presents the results of the application of the developed NSGA-II algorithm 
in developing the Pareto front in the case of small problem sizes (18 and 72 
activities) while Figure 2 provides the corresponding results for the medium to large 
size problems (288, 1,152 and 4,608 activities). In every case, the diagram to the left 
show the initial random population point scattering while the other to the right the 
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final point convergence towards the actual Pareto front. The red points indicate the 
exact solution and the light blue ones the algorithm results. 
 

It appears that the smaller the problem is, the more scattered the initial points are 
within the solution space. On the contrary, in large problems, the points of the initial 
solutions tend to be crowded within a narrow central area of the solution space. This 
crowding may have an adverse effect on the algorithm success to approach the 
optimal solutions. Nevertheless, the problem size also plays a key role in 
performance effectiveness both in terms of accuracy and computation time. This is 
obvious by comparing the Pareto curves that are developed by the NSGA-II 
algorithm and those developed manually based on the basic 18-activity project. 
 
 
 
 

 
 
 

   
 

Figure 1: NSGA-II results compared to optimal Pareto front at small project sizes: 
(a) initial random population (left), (b) final convergence to Pareto front (right). 
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Figure 2: NSGA-II results compared to optimal Pareto front at medium to large 
project sizes: (a) initial random population (left), (b) final convergence to Pareto 

front (right). 
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 To compare the single- and multi-objective analysis results (GA and NSGA-II 
algorithms respectively), Figure 3 presents the deviations of the three algorithms 
from the optimal solutions at the specific project durations mentioned before (110 
and multiples, 125 and multiples) for the five project sizes. The results indicate that 
the tailor-made single-objective GA outperforms the NSGA-II algorithm; however, 
the latter provides results for multiple project durations in a single run. Further, the 
performance deviations of all algorithms appear to follow an exponential-like form 
with regard to the project size. Finally, the deviations appear to be higher at lower 
project durations (e.g., 110 etc) where the Pareto curve is rather steep. This is due to 
the fact that any misalignment with the optimum solution results in high cost 
increases.  
 

 

 
 
 

 
 

Figure 3:  Optimization results by different methods and project scales. 
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 Finally, the employment of the general-use commercial optimization software 
does not generally attain effective solutions. Even though such a software allows 
adjusting the GA parameters (e.g., initial population, crossover and mutation rates), 
it acts as a black box, not allowing fine tuning to the specific problem. However, it 
can be of some importance first because of the easiness to apply and for its 
capability to provide a relative performance evaluation of different scenarios. 
 
4  Conclusions and Contributions 
 
The aim of this study is to investigate the effectiveness of multi-objective 
optimization in solving the time-cost trade-off problem at different project scales. 
For this purpose, the NSGA-II algorithm was used, with the analysis to include from 
small-scale problems (18 activities) to large-scale ones (up to 4,608 activities). In 
addition, in order to check the effectiveness of the multi-objective optimization 
algorithm, a single-objective formulation for cost minimization at specific project 
durations and the corresponding GA algorithm was developed (both algorithms, the 
GA and the NSGA-II were developed in the Visual Basic environment). Finally, the 
same problems were solved by a general-use commercial software that employs 
genetic algorithms as a means for optimization. 
 
 The case studies that were analysed have resulted from a benchmark 18-activity 
network from the literature. This basic network was repetitively applied in serial and 
parallel forms to develop larger networks for which the optimal solutions can be 
determined based on the corresponding solutions of the basic network. In this 
regard, it is feasible to realistically assess the performance of the methods under 
analysis. 
 
 The comparison between the NSGA-II and the GA algorithms indicates that the 
latter performs better in all cases (in a general perspective, the NSGA-II results in 
deviations from 50% to 100% higher than those of the simple GA). This is expected 
as the solution space is larger in the first case and includes the whole allowable 
project duration range while the simple GA searches at a specific project duration 
every time. On the other hand, in order to develop the Pareto front, the single-
objective GA needs to be repetitively run at several project duration levels.  
 
 The employment of the commercial GA software results in the lowest 
performance compared to both the NSGA-II and the tailor-made GA. This is mainly 
due to the fact that, as a general purpose software, it does not provide the easiness to 
fine-tuning to the specific problem. Nevertheless, it can be considered as a tool for a 
quick rough approximation of the optimal solutions as well as a means of relative 
performance comparison among different case studies. 
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