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Abstract 
 

Contact simulation can introduce substantial computational cost and complexity to 

large displacement structural analysis, which by itself can already be very expensive. 

The inclusion of contact simulation in a complete sense entails incorporating the full 

expressions of the first and second derivatives of the contact potential energy to be 

used for the prediction of the structural response at successive iterations of the 

Newton-Raphson procedure. Furthermore, these expressions would have to be re-

evaluated at every iteration to account for the updating of the contact region. In order 

to increase computational efficiency, the contact constraint formulation can be 

approximated to a certain level without significant compromise in accuracy. This 

paper proposes several approximations to the constraint formulation whereby partial 

expressions of derivatives are used, depending on how the projection coordinates, the 

gap vector, and the unit normal vector of the contact region are assumed to vary within 

each equilibrium step with respect to the displacement degrees of freedom. 
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1  Introduction 
 

Incorporating contact simulation into large displacement structural analysis can 

introduce substantial computational cost and complexity. In order to simulate surface-

to-surface contact using the Lagrange multiplier method, contact elements are 

introduced in the form of pairings between two segments, each segment being a 
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discretisation unit from one of the contacting surfaces [1, 2]. Typically, the segment 

from the more highly refined surface mesh is designated as the ‘slave’ and the other 

the ‘master’. Each contact element introduces an individual contribution to the 

potential energy of the system in the form of a Lagrange multiplier formulation: 
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=    (1) 

where: s

c  is the elemental contact region, which is a subset of the domain of the slave 

segment; a  is the Lagrange multiplier field over the contact region, which represents 

the contact pressure field, and is an interpolation of the additional, i.e. Lagrange 

multiplier, degrees of freedoms (DOFs) at the nodes of the slave segment; and 
ng  is 

the normal gap field over the contact region, which is an interpolation of the nodal 

displacement DOFs   from both the slave and master segments. The gap function 
ng  

is given by: 

  ms

ng n x=  (2) 

where: n  is the unit normal vector field; and  ms
x  is the gap vector field over the 

contact region, which, if evaluated at an integration point  s  on the slave segment, 

represents the vector from  s  to its orthogonal projection  m  on the master 

segment. Figure 1 shows the projection coordinates  m , the gap vector  ms
x , and 

the unit normal vector n  for a particular integration point  s . 

 

 
Figure 1: Projection point, gap vector, and unit normal vector for a particular 

integration point. 
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Adopting the contact constraint formulation in a complete sense would entail 

incorporating the full expressions of the first and second derivatives of (1) to be used 

for the prediction of the structural response at successive iterations of the Newton-

Raphson procedure. These derivatives would then contain the first and second 

derivatives of  m ,  ms
x  and n . A change in the set of displacements between 

successive iterations would invoke a change in the contact region between two 

contacting surfaces, hence a change in  m  as shown in Figure 1, which must be 

captured during the re-evaluation of the derivatives at every iteration. In the complete 

formulation,  s  is re-projected at every iteration in order to update  m . 

 

The contact constraint formulation can be optimised to increase the computational 

efficiency without significant compromise in accuracy. 
 

2  Methods 
 

The first aspect of the formulation optimisation is that a second-order Taylor 

approximation of the gap function 
ng  is taken in terms of the displacement DOFs 

 gU : 

    g g g

n n n g n gg0 0 0
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The Taylor coefficients n 0
g ,  n g 0,g , and 

n gg 0,g 
 

 are evaluated at the start of the 

equilibrium step (denoted by subscript ‘0’), and are not re-evaluated at every iteration. 

The complete expressions of  n g 0,g  and 
n gg 0,g 

 
 represent the actual first and 

second derivatives of ng  respectively, and hence contain complete expressions of the 

derivatives of  m ,  ms
x  and n . Re-projection of  s  is only done at the end of 

the step. The second aspect of the formulation optimisation is the approximation of 

 m ,  ms
x  and n  based on assumptions as to whether these entities are constant, 

or vary linearly or quadratically with  gU  across the step. It is noted that the first 

derivative of  m  with respect to  gU  is an implicit function in  gU  obtained by 

the assertion that the gap vector  ms
x  remains perpendicular to the slave surface over 

an infinitesimal change in displacement,  gU , and its corresponding infinitesimal 

change in projection coordinates,  m  . As shown in Table 1, six ‘Approximation 

Types’ are considered here based on the different combinations of the assumptions 

for the variation of  m ,  ms
x  and n  with respect to  gU . 

 

To assess the accuracy of the different approximation types, a model is set up in 

ADAPTIC [2] with the initial configuration and parameters as shown in Figure 2. Two 

layers, consisting of geometrically nonlinear quadrilateral solid elements with 
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identical dimensions, are stacked vertically. The top layer is designated as the slave 

layer and the bottom the master. The top faces of solid elements M1-7 are coupled 

with the bottom faces of S1-7 via contact elements C1-7, and hence there are no shared 

nodes between the two layers at this vicinity. The applied loads shown in Figure 2 are 

proportional loads, where the load factor   is increased from 0 to 10 over 4 steps. The 

analysis is run for each approximation type adopted by the contact elements, as well 

as for the complete formulation. In each case, the percentage error of the strain energy 

at 10 =  for Approximation Types 1-6 is calculated as follows: 
 

 
type complete

complete

Percentage error of strain energy 100
U U

%
U

−
=   (4) 

 

where typeU  is the total strain energy of the system when a particular approximation 

type is adopted, and completeU  is the total strain energy of the system when the complete 

formulation is adopted. The study is then repeated with 6, 8, 10, 12, 14, 16, 18, and 

20 load steps.  
 

Approximation 

Type 

Variation of projection 

coordinates  m  

Variation of gap 

vector  ms
x  

Variation of unit 

normal vector n   

1 Constant Linear Constant 

2 Linear Linear Linear 

3 Linear Quadratic Linear 

4 Quadratic Quadratic Linear 

5 Linear Quadratic Quadratic 

6 Quadratic Quadratic Quadratic 

Table 1: Approximation Types with different combinations of assumptions for the 

variation of the entities. 
 

 
Figure 2: Numerical example with contact elements adopting the different 

Approximation Types. 
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3  Results 
 

Figure 3(a) shows the deformed configuration at 10 = , which is similar for all 

approximation types and the complete formulation. Due to the nature of the boundary 

conditions, the model behaves as two vertically stacked cantilever beams supported 

at the same end. As the free end of the cantilever deflects downwards, due to the lack 

of composite action between the two layers, the layers slip relative to each other in 

the direction of the beam axis. Furthermore, the directions of the unit normal vectors 

n  of the contact elements change as well. The model configuration and applied 

loads are set up such that, within the maximum load factor of the study, the integration 

points of the slave segment of any contact element would not end up projecting into 

the master segment of another. 
 

 
Figure 3: (a) Deformed configuration of model at final load factor with displacement 

scale factor of 1; (b) Plot of percentage error of strain energy against number of load 

steps for different Approximation Types. 
 

As shown in Figure 3(b), the percentage errors of the strain energy of the different 

Approximation Types converge to zero as the number of load steps increase, i.e. the 

size of the load step decreases. This verifies their ability to approximate the complete 

contact formulation. It can be seen that a very high accuracy is achieved with 

Approximation Type 3 onwards, having a percentage error of only -0.0011% when 4 

load steps are used. This shows that it is reasonably accurate to assume a linear 

variation of the projection coordinates  m  and the unit normal vector n  with the 

displacement DOFs  gU , and the nonlinearity of the complete contact formulation 

can be captured satisfactorily as long as a quadratic variation of the gap vector  ms
x  

is adopted. It is noted that the quadratic variation of the gap vector  ms
x  in 

Approximation Types 3 and 4 is also approximate in itself. This is because the full 

expression of the second derivative of  ms
x with respect to  m  would contain the 

second derivative of  m  as well, but this is omitted in these two Approximate Types 

due to the assumption of a linear variation of  m . 
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4  Conclusions and Contributions 
 

Approximative reduced-order constraint formulations are proposed in this paper to 

enhance the computational efficiency of contact simulation. In the approximate 

formulations, partial expressions of derivatives are used, depending on how the 

projection coordinates  m , the gap vector  ms
x , and the unit normal vector n  

are assumed to vary within each equilibrium step with respect to the displacement 

DOFs  gU . All these entities are approximated within each equilibrium step and the 

projection of the integration points  s  onto the master surface is only employed at 

the end of each step, after equilibrium has been achieved. Six different 

‘Approximation Types’ are implemented and tested here, based on different 

combinations of the assumptions for the variation of  m ,  ms
x  and n  with 

respect to  gU . It was found that good accuracy is already achieved on the 

assumption that both  m  and n  vary linearly and  ms
x  varies quadratically with 

the displacement DOFs  gU . This circumvents the need for evaluating the second 

derivatives of  m  and n , which can be expensive due to their extensive 

formulations. Further cost savings can potentially be achieved from the fact that the 

entities are only re-evaluated at the start of the step instead of at every iteration. An 

overall reduction in the expense of computing the contact constraint formulations 

would expedite the problem solution, hence allowing for the conception of contact 

simulation models involving more complex configurations and loadings. 
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