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Abstract 
 

This investigation implements domain decomposition in proper orthogonal 

decomposition (POD) to construct an effective multi-block methodology for physics 

simulations of engineering and scientific problems. To develop such a methodology, 

the structure of interest is first partitioned into smaller blocks, and solution data of 

each block are collected from detailed numerical simulation (DNS) accounting for 

parametric variations in the block. The collected data that represent the block are used 

to generate (or train) a set of basis functions (or POD modes) that are therefore 

tailored to the characteristics of the block accounting for its parametric variations. 

With the well-trained modes, the approach significantly reduces the degree of 

freedom (DoF) needed to reach an accurate solution. To construct a model for a larger 

domain, the trained POD blocks are then glued together using the discontinuous 

Galerkin method to enforce thermal continuity at the block interfaces. The multi-

block concept further minimizes the computational effort in the training process and 

allows the POD methodology to offer efficient simulation models for large-scale 

structure with a high resolution, which may be crucial for many engineering and 

scientific applications. 

The multi-block POD methodology has been applied to physics simulations in two 

distinct areas, including a prediction of the dynamic thermal distribution in a 2-block 

3D semiconductor structure and simulation of a 3-block 1D quantum-well structure 

whose electron wave functions are governed by the Schrödinger equation. It has been 

illustrated that the POD methodology in both applications is able to offer very good 

agreement with the DNS results using just 3 or 4 POD modes in the 3D and 1D 

problems. 
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1  Introduction 
 

Solutions of complex physics problems usually rely on direct numerical simulations 

(DNSs), such as finite-difference (FD) and finite-element (FE) method. Many 

commercial and open-source codes have been developed in recent decades, covering 

a wide range of scientific and engineering applications with good accuracy. These 

DNS tools are however computationally intensive, especially when a high resolution 

is needed. To minimize the computational effort, numerical degrees of freedom (DoF) 

needs to be substantially reduced. The common approach is to project the problem 

onto a functional space described by a finite set of orthogonal basis functions, such 

as the Fourier basis, wavelets, Bessel functions, Legendre Polynomials, Wannier 

functions, etc. Each set of these basis functions for a problem is however assumed 

based on its solution form, physical geometries and excitations but may not be optimal 

for the problem of interest.  
  

To significantly improve the projection method, the basis functions need to be 

optimized for the particular problem of interest. Proper orthogonal decomposition 

(POD) [1,2] is an effective projection-based method that minimizes the DoF needed 

to reach an accurate solution via decomposition of solution data collected from DNS 

accounting for parametric variations. However, such a decomposition (training) 

process is problematic on 2 issues. Firstly, to collect the massive amount of data from 

DNS in a large-scale multi-dimensional structure, particularly with a high resolution, 

it is computationally prohibitive. Secondly, to account for enough variations of 

physical parameters and boundary conditions (BCs) in the training, time-consuming 

DNS needs to be performed many times to cover a wide range of operating/BC 

conditions, which is impractical for engineering design of a structure. 
 

This work investigates an approach implementing domain decomposition in POD, 

where the domain is partitioned into subdomains (named elements or blocks). The 

training is then performed for each smaller block locally instead of the entire domain 

globally. This approach offers more efficient/thorough training for the POD basis 

functions (or modes). It also provides a more practical, flexible way of analysing and 

designing complex engineering or scientific problems based on the concept of 

building blocks. Use of building blocks has been an important practice for modern 

technology development, including semiconductor chips, nanostructures, material 

synthesis, metamaterials, etc. Two test cases of physics simulations using the multi-

block POD methodology are presented below, including chip-level dynamic thermal 

simulation of a 2-block semiconductor structure and a quantum eigenvalue problem 

of a 3-block quantum well (QW) structure.  
 

2  Methods 
 

POD generates its modes 𝜂(𝐫) from solution data 𝑄(𝐫, 𝑡) by maximizing the mean 

square inner product of the mode and the solution [1,2]. This leads to an eigenvalue 

problem,  
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∫ ⟨𝑄(𝐫, 𝑡) ⊗  𝑄(𝐫′, 𝑡)⟩ 𝜂(𝐫′)𝑑Ω′ = 𝜆 𝜂(𝐫),
Ω′

(1) 

 

where  is the eigenvalue and the brackets indicate an average over many snapshots 

in time. In static problems, the “snapshots” are collected with variations of excitations 

and/or BCs. The heat transfer problem is discussed first below, followed by the 

Schrödinger equation. 
 

With 𝑄(𝐫, 𝑡) replaced by 𝑇(𝐫, 𝑡), temperature is expressed as a linear combination 

of the modes, 
 

𝑇(𝐫, 𝑡) = ∑ 𝑎𝑗(𝑡)

𝑀

𝑗=1

𝜂𝑗(𝐫), (2) 

 

where M is the selected number of modes for the solution and 𝑎𝑗(𝑡) is the temperature 

in the POD space for each mode. To solve 𝑎𝑗, the heat transfer equation can be 

projected onto a POD space, 
 

∫ (𝜂
𝜕𝜌𝐶𝑇

𝜕𝑡
+ ∇𝜂 ∙ 𝑘∇𝑇) 𝑑Ω

Ω

= ∫ 𝜂𝑃𝑑(𝑟, 𝑡)𝑑Ω
Ω

+ ∫𝜂 𝑘∇𝑇 ∙ 𝑑𝐒
S

, (3) 

 

with k as thermal conductivity, Pd power density,  density, C specific heat and S the 

surface vector. Using Equation (2) in Equation (3), a set of coupled ordinary 

differential equations (ODEs) can be derived, 
 

∑ 𝑐𝑖𝑗

𝑀

𝑗=1

𝑑𝑎𝑗

𝑑𝑡
+ ∑ 𝑔𝑖𝑗

𝑀

𝑗=1

𝑎𝑗 = 𝑃𝑖𝑛𝑡,𝑖 + 𝑃𝑠𝑢𝑓,𝑖,   for 𝑖 = 1 to 𝑀, (4) 

 

where the coefficients (𝑐𝑖𝑗 and 𝑔𝑖𝑗) and interior and boundary surface powers (𝑃𝑖𝑛𝑡,𝑖 

and 𝑃𝑠𝑢𝑓,𝑖) are defined by the integrals in Equation (3) [3,4].  
 

For a multi-block domain, using the discontinuous Galerkin method [5,6], 

Equation (3) becomes   
 

∫ (𝜂
𝜕𝜌𝐶𝑇

𝜕𝑡
+ ∇𝜂 ∙ 𝑘∇𝑇) 𝑑Ω

Ω

=

∫ 𝜂𝑃𝑑(𝑟, 𝑡)𝑑Ω
Ω

+ ∫(⟦𝑘𝑇⟧〈∇𝜂〉 − 〈𝑘∇𝑇〉⟦𝜂⟧) ∙ 𝑑𝐒
S

− 𝜇 ∫ ⟦𝑘𝑇⟧⟦𝜂⟧𝑑𝑆
S

, (5)

 

 

where the penalty factor μ = N/r with N as the penalty number and r as the local 

mesh size, and  and ⟦⟧ are the average and difference across the interface, 

respectively. Using Equation (2) for each block, an ODE matrix equation for an N-

block domain can be derived. With the n-th block vector, 𝒂𝑛 (𝑛 = 1 to 𝑁), 

determined, the n-th block temperature can be estimated in Equation (2).  
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In a quantum block surrounded by others, 𝑄(𝐫, 𝑡) in Equation (1) is replaced by 

the electron wave function (WF) 𝜓(𝐫).  Similar to Equation (5), the Schrödinger 

equation can be projected onto a set of POD modes for each block as 
 

∫ ∇𝜂 ⋅
ℏ2

2𝑚∗
∇ψ𝑑Ω + ∫ 𝜂𝑈𝜓𝑑Ω − ∮ (⟦

ℏ2

2𝑚∗
𝜓⟧ ⟨∇𝜂⟩ + ⟨

ℏ2

2𝑚∗
∇𝜓⟩ ⟦𝜂⟧) ∙ 𝑑𝐒

𝑆ΩΩ

−𝜇 ∮ ⟦
ℏ2

2𝑚∗
𝜓⟧ ⟦𝜂⟧𝑑𝑆

𝑆

= 𝐸 ∫ 𝜂 𝜓 𝑑Ω
Ω

, (6)

 

 

where m* is electron effective mass, U potential energy and  the reduced Plank’s 

constant.  in each block is expressed as a linear combination of its modes, 
 

𝜓(𝐫) = ∑ 𝑎𝑗

𝑀

𝑗=1

𝜂𝑗(𝐫). (7) 

 

where 𝑎𝑗 representing the time-independent Schrödinger equation in the POD space. 

Using Equation (7) in Equation (6), a multi-block quantum eigenvalue problem can 

be formulated for an (NM)(NM) Hamiltonian in the multi-block POD space for an 

N-block domain each with M modes.  

 

3  Results 
 

For demonstration of POD on thermal analysis of a 2-block 3D domain consisting of 

Core-1 and L2-Cache in a CPU shown in Figure 1, uniform power is applied to each 

block with additional higher power to the red square area. Dynamic power is averaged 

over 120k cycles at 3.2GHz and assigned randomly. Heating thickness is 0.0558mm 

on the top. Adiabatic BCs are assumed except the bottom with constant heat flux. 

 

 
 

Figure 1:   Floorplan of AMD-ATHLON-II X4-610e CPU with the 2-block domain, 

including L2-Cache (Block-1) and Core-1 (Block-2). Path A and Points B and C are 

the locations for the demonstrations below. 
 

With POD modes generated for each block via data collected from an FE method, 

2-block POD thermal model is validated against FE simulation. Figure 2 shows that 
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least square errors (LSEs) with 4 modes in the entire domain and heat layer are near 

2.48% and 1.78%, respectively, at N  40-80. Dynamic temperatures at Points B and 

C are illustrated in Figures. 3(a) and 3(b), and the profile along Path A in Figure 3(c), 

where results with 4 modes from these 2 approaches nearly overlap except near the 

temperature peak.   

 

 
 

Figure 2. LSEs in the (a) entire domain and (b) heating layer. 

 

 
 

Figure 3: Dynamic temperatures at (a) Point B and (b) Point C and temperature 

distribution along (c) Path A. 

 

 
 

Figure 4: (a) Top: QW structure for the demonstration.  Bottom: 2 QW structures for 

the training.  (b) LSEs of WFs in QSs 1-4 over the entire domain.  
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The quantum POD simulation is demonstrated in a 6-QW structure, shown in 

Figure 4(a), partitioned into 3 blocks labelled as AB-E-CD.  FD Schrödinger 

simulations of the A-E-E-D and A-B-C-D domains, shown in Bottom of Figure 4(a), 

are performed separately to collect WF data to generate POD modes for Blocks AB, 

E and CD. The demonstration in Figure 4(b) shows that an LSE of the 3-block POD 

model below 1%, compared to the FD simulation, is achieved with just 3 modes for 

the first 2 quantum states (QSs), and for QSs 3 and 4, 4 modes are needed. WFs from 

the POD model with 3 or 4 modes shown in Figures 5(a) and 5(b) for QSs 1 and 3 are 

in excellent agreement with the FD simulation.  

 

 
 

Figure 5:  Energy band diagram and WFs in the (a) first and (b) third quantum states. 

 

4  Conclusions and Contributions 
 

POD has been found effective for physics simulations in different applications [3,4,7-

10]. However, it has been limited to small/simplified structures due to computational 

effort needed for the training, including data collection, mode generation and 

calculations of model parameters. For a large-scale structure, this becomes 

prohibitive. For example, for thermal-aware task scheduling for CPUs/GPUs [11-14], 

the scheduling relies on information on hot spots. Currently, the thermal-aware 

CPU/GPU scheduling is almost all based on efficient RC thermal circuits with large 

RC elements, which very likely misestimate the peak values and locations of small-

diameter hot spots. Although the POD approach offers an effective method with fine-

enough resolution to capture all the hot spots, it is computationally intensive to train 

the large-scale CPU/GPU structure to develop a POD model. 
 

Implementing domain decomposition in POD, the multi-block POD methodology 

offers an efficient alternative for training smaller blocks individually. With the multi-

block approach, a more thorough training can be performed to generate a more 

accurate and robust set of POD modes for each block. In addition, a greater flexibility 

can be achieved if building blocks for the system are trained. A set of POD building 

blocks for a specific technology can then be stored in a database for design/simulation 

of a larger structure. The building-block concept is one of the major reasons for 

efficient engineering design and fast growth of modern technologies. Fast advance in 

multi-core CPUs/GPUs is a typical example of utilizing the building blocks, including 

cores, caches, memory units, streaming microprocessors and many other functional 

units. The concept of the POD building blocks can be implemented, for example, in 
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thermal-aware design exploration of GPU/CPU floorplans [15-18] that is a crucial 

step to minimize the heating issues and improve their reliability and performance. 

Another example is the use of building blocks for design/synthesis of nanostructures 

and materials, which requires efficient and accurate solution of the Schrödinger or 

Schrödinger-like equations to facilitate calculations of electronic structure. The 

quantum multi-block POD simulation methodology, if successfully implemented in 

multi-dimensional domain, will be useful for such applications.  
 

This work has validated the great efficiency and the high accuracy of the multi-

block POD simulation methodology in 2 different areas of applications. With the 

improved efficiency for the POD training provided by the multi-block approach, 

effective multi-physics multi-dimensional simulations enabled by the multi-block 

POD methodology will become possible in the near future. 
 

Acknowledgements 
 

This work is supported by the National Science Foundation under Grant No. ECCS-

2003307. 
 

References 
 

[1] J. L. Lumley, "The structure of inhomogeneous turbulent flows", in 

Atmospheric Turbulence and Radio Wave Propagation, 166-177, 1967.  

[2] G. Berkooz, P. Holmes, and J. L. Lumley, "The proper orthogonal 

decomposition in the analysis of turbulent flows", Annu. Rev. Fluid Mech., 25, 

539–575, 1993. 

[3] W. Jia, B.T. Helenbrook, Ming-C. Cheng, "Fast Thermal Simulation of FinFET 

Circuits Based on a Multi-Block Reduced-Order Model", IEEE Trans. CAD ICs 

& Systems, 35, 1114-1124, 2016.  

[4] W. Jia, B.T. Helenbrook, Ming-C. Cheng, "Thermal Modeling of Multi-Fin 

Field Effect Transistor Structure Using Proper Orthogonal Decomposition", 

IEEE Trans. Electron Devices, 61, 2752-2759, 2014.  

[5] D.N. Arnold, F. Brezzi, B. Cockburn, D. Marini, “Discontinuous Galerkin 

methods for elliptic problems”, Lecture Notes in Comp. Sci. Eng., 89-101, 2000. 

[6] D. N. Arnold, F. Brezzi, B. Cockburn, L. D. Marini, “Unified analysis of 

discontinuous Galerkin methods for elliptic problems”, SIAM J. Numer. Anal., 

39, 1749-1779, 2002.  

[7] D. Ahlman, F. Soderlund, J. Jackson, A. Kurdila and W. Shyy, “Proper 

orthogonal decomposition for time-dependent lid-driven cavity flows”, Numer. 

Heat Transfer, Part B.  42, 285–306, 2010. 

[8] P. A. LeGresley and J. J. Alonso. 2001. Investigation of non-linear projection 

for POD based reduced order models for aerodynamics. Proc. 39th Aerosp. Ind. 

Assoc. Amer. Aerosp. Sci. Meeting Exhibit. (AIAA), 1–15, Reno, NV, Jan. 2001. 

[9] K. Lu, Y. Jin, Y. Chen, Y. Yang, L. Hou, Z. Zhang, Z. Li and C. Fu, “Review 

for order reduction based on proper orthogonal decomposition and outlooks of 

applications in mechanical systems”, Mech. Sys. Signal Proce., 123, 264–297, 

2019. 



 

8 

 

[10] D. Binion and X. Chen, “A Krylov enhanced proper orthogonal decomposition 

method for frequency domain model reduction”, Eng. Computations, 34, 285–

306, 2017. 

[11] H. Pourmeidani, A. Sharma, K. Choo, M. Hassan, M. Choi, K. Kim, B. Jang, 

“Dynamic Temperature Aware Scheduling for CPU-GPU 3D Multicore 

Processor with Regression Predictor”, J. Semicond. Tech. & Sci., 18, 115-124, 

2018  

[12] R. Nath, R. Ayoub, T. S. Rosing, “Temperature aware thread block scheduling 

in GPGPUs”, 50th ACM/EDAC/IEEE Design Automation Conf. (DAC), Austin, 

TX, 1-6, 2013. 

[13] M. Niknafs, I. Ukhov, P. Eles and Z. Peng, “Runtime Resource Management 

with Workload Prediction”, Proc. 56th Annual Design Automation Conf. (DAC 

'19). Article No. 169, 2019. 

[14] O. Benedikt et al., “Thermal-Aware Scheduling for MPSoC in the Avionics 

Domain: Tooling and Initial Results”, 2021 IEEE 27th Int. Conf. Embedded and 

Real-Time Computing Systems and Applications (RTCSA), 159-168, 2021. 

[15] Y. W. Wu, C. L. Yang, P. H. Yuh and Y. W. Chang, "Joint exploration of 

architectural and physical design spaces with thermal consideration", ISLPED 

'05. Proc. Int. Symp. Low Power Electronics & Design, 123-126, San Diego, 

CA, 2005. 

[16] P. Chaparro, J. Gonzáles, G. Magklis, Q. Cai and A. González, "Understanding 

the Thermal Implications of Multi-Core Architectures", in IEEE Tran. Parallel 

& Distributed Sys., 18, 1055-1065, 2007. 

[17] I. Arnaldo, A. Vicenzi, J. L. Ayala et al., "Fast and scalable temperature-driven 

floorplan design in 3D MPSoCs", 13th Latin American Test Workshop 

(LATW), Quito, Ecuador, 1-6, 2012. 

[18] K. Manna, M. Jimson, “Thermal-aware Design Strategies for the 3D NoC-based 

Multi-Core Systems”, Design and Test Strategies for 2D/3D Integration for 

NoC-based Multicore Architectures. Springer, Cham, 111-123, 2020. 


