

1

Abstract

Parallelization of metaheuristics using High-Performance Computing (HPC) provides
a suitable environment to approximate large NP-hard combinatorial optimization
problems (COPs). The Ant Colony Optimization (ACO) is a population metaheuristic
with outstanding time and performance results. This algorithm mimics the indirect
communication and self-organization capabilities of ants. In ACO, each ant is an
autonomous construction procedure, and builds partial solutions to share with the rest
of the colony. The combination of ants results in inherent parallel behaviour that
enables the evaluation of complex problems. This behaviour has motivated the
creation of algorithms that exploit parallel architectures. This paper accelerates ACO
using Message Passing Interface (MPI) and HPC infrastructure. The MPI-ACO
parallelization follows the master-slave model with coarse granularity. The algorithm
divides the number of ants into different processors that simultaneously create local
solutions and iteratively approximate the optimal solution. We evaluate the algorithm
using three COPs, the travelling salesman problem (TSP), the job shop scheduling
problem (JSP), and image segmentation. Each problem is encoded in MPI-ACO using
the appropriate heuristic information and selection policies. The speedup, efficiency,
and Karp-Flatt metric are used to evaluate the acceleration of the MPI-ACO using up
to 32 cores, demonstrating the scalability of the MPI-ACO algorithm.

Keywords: metaheuristics, parallel computing, high-performance computing, ant
colony optimization, message passing interface, combinatorial optimization
problems.

Solving Optimization Problems with MPI-ACO

J. Banda-Almeida1,2 and I. Pineda1,2

1School of Mathematical and Computational Sciences, Yachay
Tech University, Urcuquí, Ecuador

2Yachay Scientific Computing Group, Ecuador

Proceedings of the Eleventh International Conference on
Engineering Computational Technology
Edited by B.H.V. Topping and P. Iványi

Civil-Comp Conferences, Volume 2, Paper 8.1
Civil-Comp Press, Edinburgh, United Kingdom, 2022, doi: 10.4203/ccc.2.8.1

Civil-Comp Ltd, Edinburgh, UK, 2022

2

1 Introduction

Optimization algorithms are widely used to solve engineering, energy, economics,
management, and logistics problems. Soft methods such as metaheuristics can
efficiently approximate large and complex optimization problems. Ant Colony
Optimization (ACO) is a population metaheuristic inspired by the food foraging
process of ants [1]. During this process, ants deposit a chemical known as pheromone
on the traversed path from the nest to the food source. The shorter routes accumulate
more pheromone and attract other ants, converging in the optimum route.

In the ACO algorithm, artificial ants are simple agents that share a common
memory space and build a solution following an iterative process that adds
components incrementally to a partial solution [2]. The algorithm consists of
initialization, solution construction, and pheromone reinforcement [3]. In the
initialization, the problem is encoded with a graph representation, and we configure
the initial parameters: pheromone influence, heuristic coefficient, evaporation ratio,
and the population size of ants.

 In the solution construction phase, ants build a solution following an iterative
probabilistic policy that determines the edges chosen by ants at each step, using

 𝑝
∑ ∈

 , (1)

where τ is the pheromone information, η is the heuristic information, and Λ
represents the nodes not yet visited. Finally, the pheromone reinforcement process
removes some amount of pheromone from the edges traversed by ants to enable the
exploration of different paths.

The inherent parallel behaviour of ants allows them to cooperate and solve complex

problems. This behaviour has motivated the implementation of parallel ACO
algorithms to speed up the evaluation of COPs. Moreover, High-Performance
Computing (HPC) can leverage parallel algorithms to overcome traditional computing
capabilities limitations.

This work presents a distributed Ant Colony Optimization algorithm with coarse

granularity. The parallelization of ACO follows a master-slave model and divides the
total number of ants into processing nodes. This division creates several subcolonies
that execute the solution construction process independently. The algorithm was
evaluated with three discrete combinatorial optimization problems: the TSP, the JSP,
and image segmentation. The heuristic information and selection policies are adapted
according to each problem constraint. The speedup, efficiency, and Karp-Flatt metric
[4] indicate a scalable performance of the MPI-ACO.

3

2 Methods

The parallelization of the ACO algorithm implements a synchronous communication
model with coarse granularity using the MPI library. The master-slave model is the
most common process communication approach in message-passing applications [5].
At the beginning of the procedure, the master process initialises the parameters and
the pheromone structure. Also, it loads the problem instance and constructs a complete
weighted graph. The next step initialises the MPI communicator with 𝑘 spawned
processes. At the beginning of each iteration, a copy of the pheromone matrix τ is
broadcasted to each process. Slave processes construct local solutions simultaneously
and send back their results. Then, the master process updates the global pheromone
structure and broadcasts the information again until the end condition is satisfied.

The implemented algorithm was evaluated on three COPs. The TSP is an NP-hard
problem that minimises the total cost of constructing a Hamiltonian cycle on a
weighted graph. A TSP instance is represented in the MPI-ACO as a complete graph
𝐺 𝑉, 𝐸 where 𝑉 and 𝐸 are the sets of nodes and edges, respectively. The heuristic
information in this problem corresponds to the inverse of the euclidean distance
between the cities.

The JSP is also an NP-hard problem and aims to process a finite set of jobs on a
finite set of machines. Each machine can handle only one job at a time, and each job
consists of 𝑚 machine operations with a predefined order and a deterministic
processing time. The objective is to find a feasible schedule that minimises the
makespan of running all the jobs and satisfying all the constraints. The heuristic value
η for these problems is 1/𝐶 , where 𝐶 symbolises the completion time of an
operation [7].

Image segmentation consists in extracting a region of interest from an image. Our

problem extracts the optic disc (OD) from retinal images. This process automates and
increases the precision of detecting several eye diseases [8]. For this problem, the
heuristic information corresponds to gradient intensity values. A colony of ants is
initialised for each retinal image, and they move to neighbouring pixels until reaching
the stop criterion.

We have evaluated the MPI-ACO with the described experimental scenarios using

an HPC cluster based on the Nvidia DGX A100 system with a MIMD NUMA
architecture and 128 dual cores AMD ROME 7742 with 2.25 GHz.

3 Results

We analyse the behaviour of the MPI-ACO algorithm on the TSP using up to 2, 4, 8,
16 and 32 cores. Table 1 compares the speedup, efficiency, and Karp-Flatt metric
between three TSP instances (rat575, rl1889, and fl3795) from the TSPLIB

4

benchmark library [6]. Each value corresponds to the average of 30 executions. The
speedup grows steadily from 1 to 8 cores, and then it increases gradually from 8 to 32
cores. The efficiency presents a degradation related to the sequential part of the
algorithm. Some procedures, such as the global pheromone update, are performed
only by the master process. Therefore, the efficiency of the algorithm decreases
continuously. The Karp-Flatt metric shows a non-uniform behaviour as the number of
cores increments. This behaviour suggests that the work distribution between
processors is not perfectly load-balanced. It is related to defining a fixed colony size
without considering the specific number of processors at each time.

Instance Cores Speedup Efficiency Karp-Flatt

rat575

2 1.92721 0.96360 0.03776

4 3.63288 0.90822 0.03368

8 6.85830 0.85728 0.02378

16 12.1685 0.76053 0.02099

32 15.98429 0.49950 0.03232

rl1889

2 1.80992 0.90496 0.10501

4 3.82795 0.95698 0.01498

8 7.32637 0.91579 0.01313

16 11.84103 0.74006 0.02341

32 16.43636 0.51363 0.03054

fl3795

2 1.84950 0.92475 0.08137

4 3.62668 0.90667 0.03431

8 6.83410 0.85426 0.02437

16 11.33247 0.70827 0.02745

32 17.09831 0.53432 0.02811

Table 1: MPI-ACO evaluation on TSP.

Table 2 summarises the evaluation of JSP. The table shows the speedup, efficiency,
and Karp-Flatt of three JSP instances (ta20, ta25, and ta40) using up to 32 cores. The
speedup values are lower than the TSP results because of the increased complexity of
the JSP problem. The speedup rises slightly with the number of cores because the
work is divided into more executing units. However, the efficiency decays
significantly with the problem size because the search space increases, and the
algorithm is constantly trapped in local minima. The Karp-Flatt metric determines the
elements that contribute to efficiency degradation. The values corresponding to the
Karp-Flatt metric are nonuniform with the increase in cores.

5

Instance Cores Speedup Efficiency Karp-Flatt

ta20

2 1.53894 0.76947 0.29958

4 3.03597 0.76947 0.10584

8 4.80084 0.60010 0.09519

16 5.25612 0.32850 0.13627

32 5.25612 0.32850 0.12083

ta25

2 1.47105 0.73552 0.35956

4 2.13451 0.53362 0.29132

8 3.53994 0.44249 0.17998

16 4.68174 0.29260 0.16116

32 4.98962 0.20790 0.16565

ta40

2 1.52749 0.76374 0.30933

4 2.22525 0.55631 0.26584

8 3.85673 0.48209 0.15347

16 3.75218 0.23451 0.21761

32 4.40606 0.18358 0.19334

Table 2: MPI-ACO evaluation on JSP.

In the image segmentation problem, we perform experimental tests on 290 images

from the RIGA [9] dataset and 40 images from the DRIVE [10] dataset. Three
resulting images from the segmentation task are depicted in Figure 1. It shows the
contours of the optic disc detected, the region of interest and the corresponding ground
truths. It can be seen that the ACO-based segmentation algorithm localises and
effectively extracts the optic disc on the evaluated images.

The ACO algorithm for OD segmentation presents average metric values over the
80th percentile. The accuracy obtained is 90.2%, the specificity is 91.3%, and the
sensitivity corresponds to 87%. The sensitivity value is lower than the other metrics
due to the false-positive pixels classified as part of the OD.

4 Conclusions and Contributions

We have implemented a distributed ACO algorithm using MPI. The algorithm was
evaluated using three COPs: the TSP, the JSP, and image segmentation using up to 32
execution units on HPC distributed infrastructure. The main contributions of this work
are:

 A distributed ACO algorithm that can be adapted to different COPs and scales
appropriately when the number of execution units increases.

 A comprehensive evaluation of the parallel algorithm to understand the
potential issues and opportunities for maximising speedup.

6

Figure 1: Optic disc segmentation with MPI-ACO.

MPI introduces a significant overhead when we increase the execution units to
compute the solutions. This overhead occurs because the master process requires
synchronising and managing more resources. The master-slave parallel model
implemented in MPI-ACO scales well as each processor communicates only after a
complete iteration. However, the drawback of this model is that the whole procedure
depends on the master node to collect the pheromone information, update the
pheromone structure, and broadcast the new information to all the other processes.

The parallel ACO evaluation demonstrated that the efficiency decreases when

more execution units are evaluated. The efficiency degradation follows Amdahl’s law
that establishes a limit in the acceleration of parallel algorithms due to the inherent
sequential part of the program. Moreover, the Karp-Flatt metric allowed us to relate
the decrease in efficiency with a non-perfect distribution of the workload between the
processes. The TSP problem achieved a higher speedup compared with the JSP. The
complexity of JSP requires additional local search procedures to increase its
performance. Finally, MPI-ACO accurately finds the OD in the image segmentation
problem, demonstrating the flexibility of the algorithm to solve a variety of
optimization problems.

References

[1] S.M. Dorigo, G. Di Caro, “The Ant Colony Optimization Meta-Heuristic”, InD.
Corne, M. Dorigo, and F. Glover, (Editors), New Ideas in Optimization,
McGraw-Hill, London, 11–32, 1999.

[2] S.M. Dorigo, T. Stützle, “Ant colony optimization: overview and recent
advances”, Handbook of metaheuristics, 311-351, 2019.

7

[3] O. Guarnizo, I. Pineda, “Three Dimensional Adaptive Path Planning Simulation
Based On Ant Colony Optimization Algorithm”. 2019 IEEE Latin American
Conference on Computational Intelligence, LA-CCI, IEEE, 1-6, 2019.IEEE, 1-
6, 2019.

[4] A.H. Karp, H.P. Flatt, "Measuring parallel processor performance."
Communications of the ACM 33, no. 5, 539-543, 1990.

[5] C. Grelck, E. Niewiadomska-Szynkiewicz, M. Aldinucci, A. Bracciali, E.
Larsson, “Why high-performance modelling and simulation for big data
applications matters”, High-Performance Modelling and Simulation Big Data
Applications, Springer, 445, 1–35, 2019.

[6] G. Reinelt, TSPLIB95 http://www.iwr.uni-heidelberg.de/groups/comopt/-
software/tsplib95/index.html, 2004.

[7] J. Zhang, X. Hu, X Tan, J.H. Zhong, Q. Huang, "Implementation of an ant
colony optimization technique for job shop scheduling problem”, Transactions
of the Institute of Measurement and Control, 28, 93-108, 2006.

[8] C. Pereira, L. Gonçalves, M. Ferreira, “Optic disc detection in color fundus
images using ant colony optimization”. Medical & biological engineering &
computing 51, 295–303, 2013.

[9] A. Almazroa, S. Alodhayb, E. Osman, E. Ramadan, M. Hummadi, M. Dlaim,
M. Alkatee, K. Raahemifar, V. Lakshminarayanan, “Retinal fundus images for
glaucoma analysis: the RIGA dataset”, in “Medical Imaging, Imaging
Informatics for Healthcare, Research, and Applications”, International Society
for Optics and Photonics, 10579, 2018.

[10] M. Senn, http://www.isi.uu.nl/Research/Databases/DRIVE, 2009.

