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Abstract 
 

Parallelization of metaheuristics using High-Performance Computing (HPC) provides 
a suitable environment to approximate large NP-hard combinatorial optimization 
problems (COPs). The Ant Colony Optimization (ACO) is a population metaheuristic 
with outstanding time and performance results. This algorithm mimics the indirect 
communication and self-organization capabilities of ants.  In ACO, each ant is an 
autonomous construction procedure, and builds partial solutions to share with the rest 
of the colony. The combination of ants results in inherent parallel behaviour that 
enables the evaluation of complex problems. This behaviour has motivated the 
creation of algorithms that exploit parallel architectures. This paper accelerates ACO 
using Message Passing Interface (MPI) and HPC infrastructure. The MPI-ACO 
parallelization follows the master-slave model with coarse granularity. The algorithm 
divides the number of ants into different processors that simultaneously create local 
solutions and iteratively approximate the optimal solution. We evaluate the algorithm 
using three COPs, the travelling salesman problem (TSP), the job shop scheduling 
problem (JSP), and image segmentation. Each problem is encoded in MPI-ACO using 
the appropriate heuristic information and selection policies. The speedup, efficiency, 
and Karp-Flatt metric are used to evaluate the acceleration of the MPI-ACO using up 
to 32 cores, demonstrating the scalability of the MPI-ACO algorithm. 
 

Keywords: metaheuristics, parallel computing, high-performance computing, ant 
colony optimization, message passing interface, combinatorial optimization 
problems. 
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1 Introduction 
 

 

Optimization algorithms are widely used to solve engineering, energy, economics, 
management, and logistics problems. Soft methods such as metaheuristics can 
efficiently approximate large and complex optimization problems. Ant Colony 
Optimization (ACO) is a population metaheuristic inspired by the food foraging 
process of ants [1]. During this process, ants deposit a chemical known as pheromone 
on the traversed path from the nest to the food source. The shorter routes accumulate 
more pheromone and attract other ants, converging in the optimum route. 
   

In the ACO algorithm, artificial ants are simple agents that share a common 
memory space and build a solution following an iterative process that adds 
components incrementally to a partial solution [2]. The algorithm consists of 
initialization, solution construction, and pheromone reinforcement [3]. In the 
initialization, the problem is encoded with a graph representation, and we configure 
the initial parameters: pheromone influence, heuristic coefficient, evaporation ratio, 
and the population size of ants. 

 
    In the solution construction phase, ants build a solution following an iterative 
probabilistic policy that determines the edges chosen by ants at each step, using 
 

                                              𝑝
∑ ∈

 ,                                                (1) 

 

where τ  is the pheromone information, η is the heuristic information, and Λ 
represents the nodes not yet visited. Finally, the pheromone reinforcement process 
removes some amount of pheromone from the edges traversed by ants to enable the 
exploration of different paths. 

 
The inherent parallel behaviour of ants allows them to cooperate and solve complex 

problems. This behaviour has motivated the implementation of parallel ACO 
algorithms to speed up the evaluation of COPs. Moreover, High-Performance 
Computing (HPC) can leverage parallel algorithms to overcome traditional computing 
capabilities limitations.  

 
This work presents a distributed Ant Colony Optimization algorithm with coarse 

granularity. The parallelization of ACO follows a master-slave model and divides the 
total number of ants into processing nodes. This division creates several subcolonies 
that execute the solution construction process independently. The algorithm was 
evaluated with three discrete combinatorial optimization problems: the TSP, the JSP, 
and image segmentation. The heuristic information and selection policies are adapted 
according to each problem constraint. The speedup, efficiency, and Karp-Flatt metric 
[4] indicate a scalable performance of the MPI-ACO. 
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2  Methods 
 

The parallelization of the ACO algorithm implements a synchronous communication 
model with coarse granularity using the MPI library. The master-slave model is the 
most common process communication approach in message-passing applications [5]. 
At the beginning of the procedure, the master process initialises the parameters and 
the pheromone structure. Also, it loads the problem instance and constructs a complete 
weighted graph. The next step initialises the MPI communicator with 𝑘 spawned 
processes. At the beginning of each iteration, a copy of the pheromone matrix τ is 
broadcasted to each process. Slave processes construct local solutions simultaneously 
and send back their results. Then, the master process updates the global pheromone 
structure and broadcasts the information again until the end condition is satisfied. 

The implemented algorithm was evaluated on three COPs. The TSP is an NP-hard 
problem that minimises the total cost of constructing a Hamiltonian cycle on a 
weighted graph. A TSP instance is represented in the MPI-ACO as a complete graph 
𝐺 𝑉, 𝐸  where 𝑉 and 𝐸 are the sets of nodes and edges, respectively. The heuristic 
information in this problem corresponds to the inverse of the euclidean distance 
between the cities.  

The JSP is also an NP-hard problem and aims to process a finite set of jobs on a 
finite set of machines. Each machine can handle only one job at a time, and each job 
consists of 𝑚 machine operations with a predefined order and a deterministic 
processing time. The objective is to find a feasible schedule that minimises the 
makespan of running all the jobs and satisfying all the constraints. The heuristic value 
η for these problems is 1/𝐶 , where 𝐶  symbolises the completion time of an 
operation [7].  

 
Image segmentation consists in extracting a region of interest from an image. Our 

problem extracts the optic disc (OD) from retinal images. This process automates and 
increases the precision of detecting several eye diseases [8]. For this problem, the 
heuristic information corresponds to gradient intensity values. A colony of ants is 
initialised for each retinal image, and they move to neighbouring pixels until reaching 
the stop criterion. 

 
We have evaluated the MPI-ACO with the described experimental scenarios using 

an HPC cluster based on the Nvidia DGX A100 system with a MIMD NUMA 
architecture and 128 dual cores AMD ROME 7742 with 2.25 GHz. 
 
  
3  Results 
 

We analyse the behaviour of the MPI-ACO algorithm on the TSP using up to 2, 4, 8, 
16 and 32 cores. Table 1 compares the speedup, efficiency, and Karp-Flatt metric 
between three TSP instances (rat575, rl1889, and fl3795) from the TSPLIB 
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benchmark library [6]. Each value corresponds to the average of 30 executions. The 
speedup grows steadily from 1 to 8 cores, and then it increases gradually from 8 to 32 
cores. The efficiency presents a degradation related to the sequential part of the 
algorithm. Some procedures, such as the global pheromone update, are performed 
only by the master process. Therefore, the efficiency of the algorithm decreases 
continuously. The Karp-Flatt metric shows a non-uniform behaviour as the number of 
cores increments. This behaviour suggests that the work distribution between 
processors is not perfectly load-balanced. It is related to defining a fixed colony size 
without considering the specific number of processors at each time. 
 
 

Instance Cores Speedup Efficiency Karp-Flatt 

rat575 

2 1.92721 0.96360 0.03776 

4 3.63288 0.90822 0.03368 

8 6.85830 0.85728 0.02378 

16 12.1685 0.76053 0.02099 

32 15.98429 0.49950 0.03232 

rl1889 

2 1.80992 0.90496 0.10501 

4 3.82795 0.95698 0.01498 

8 7.32637 0.91579 0.01313 

16 11.84103 0.74006 0.02341 

32 16.43636 0.51363 0.03054 

fl3795 

2 1.84950 0.92475 0.08137 

4 3.62668 0.90667 0.03431 

8 6.83410 0.85426 0.02437 

16 11.33247 0.70827 0.02745 

32 17.09831 0.53432 0.02811 

Table 1: MPI-ACO evaluation on TSP. 
 
 

Table 2 summarises the evaluation of JSP. The table shows the speedup, efficiency, 
and Karp-Flatt of three JSP instances (ta20, ta25, and ta40) using up to 32 cores. The 
speedup values are lower than the TSP results because of the increased complexity of 
the JSP problem. The speedup rises slightly with the number of cores because the 
work is divided into more executing units. However, the efficiency decays 
significantly with the problem size because the search space increases, and the 
algorithm is constantly trapped in local minima. The Karp-Flatt metric determines the 
elements that contribute to efficiency degradation. The values corresponding to the 
Karp-Flatt metric are nonuniform with the increase in cores.  
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Instance Cores Speedup Efficiency Karp-Flatt 

ta20 

2 1.53894 0.76947 0.29958 

4 3.03597 0.76947 0.10584 

8 4.80084 0.60010 0.09519 

16 5.25612 0.32850 0.13627 

32 5.25612 0.32850 0.12083 

ta25 

2 1.47105 0.73552 0.35956 

4 2.13451 0.53362 0.29132 

8 3.53994 0.44249 0.17998 

16 4.68174 0.29260 0.16116 

32 4.98962 0.20790 0.16565 

ta40 

2 1.52749 0.76374 0.30933 

4 2.22525 0.55631 0.26584 

8 3.85673 0.48209 0.15347 

16 3.75218 0.23451 0.21761 

32 4.40606 0.18358 0.19334 

Table 2: MPI-ACO evaluation on JSP. 
 
In the image segmentation problem, we perform experimental tests on 290 images 

from the RIGA [9] dataset and 40 images from the DRIVE [10] dataset. Three 
resulting images from the segmentation task are depicted in Figure 1. It shows the 
contours of the optic disc detected, the region of interest and the corresponding ground 
truths. It can be seen that the ACO-based segmentation algorithm localises and 
effectively extracts the optic disc on the evaluated images. 
 

The ACO algorithm for OD segmentation presents average metric values over the 
80th percentile. The accuracy obtained is 90.2%, the specificity is 91.3%, and the 
sensitivity corresponds to 87%. The sensitivity value is lower than the other metrics 
due to the false-positive pixels classified as part of the OD. 
 

4  Conclusions and Contributions 
 

We have implemented a distributed ACO algorithm using MPI. The algorithm was 
evaluated using three COPs: the TSP, the JSP, and image segmentation using up to 32 
execution units on HPC distributed infrastructure. The main contributions of this work 
are: 

 A distributed ACO algorithm that can be adapted to different COPs and scales 
appropriately when the number of execution units increases. 

 A comprehensive evaluation of the parallel algorithm to understand the 
potential issues and opportunities for maximising speedup. 
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Figure 1: Optic disc segmentation with MPI-ACO. 
 
  

MPI introduces a significant overhead when we increase the execution units to 
compute the solutions. This overhead occurs because the master process requires 
synchronising and managing more resources. The master-slave parallel model 
implemented in MPI-ACO scales well as each processor communicates only after a 
complete iteration. However, the drawback of this model is that the whole procedure 
depends on the master node to collect the pheromone information, update the 
pheromone structure, and broadcast the new information to all the other processes. 

 
The parallel ACO evaluation demonstrated that the efficiency decreases when 

more execution units are evaluated. The efficiency degradation follows Amdahl’s law 
that establishes a limit in the acceleration of parallel algorithms due to the inherent 
sequential part of the program. Moreover, the Karp-Flatt metric allowed us to relate 
the decrease in efficiency with a non-perfect distribution of the workload between the 
processes. The TSP problem achieved a higher speedup compared with the JSP. The 
complexity of JSP requires additional local search procedures to increase its 
performance. Finally, MPI-ACO accurately finds the OD in the image segmentation 
problem, demonstrating the flexibility of the algorithm to solve a variety of 
optimization problems. 
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