

1

Abstract

For the storage of small parts and bulk materials, companies usually use storage boxes,

which, in addition to the required load capacity, must also be stackable and easily

accessible. While a large number of variants are commercially available in the lower

price segment, only few approaches exist that enable modern warehouse management.

This work describes the equipment of storage boxes with a vibration-based

measurement system to detect the filling level. This enables the functionality for

intelligent filling level detection as well as for automated reordering of the respective

goods.

From results of simulations as well as from initial findings of the investigations on a

test rig, it was concluded that vibration excitation together with analysis of the natural

frequencies is superior to the concept for investigating the decay behaviour. Thus, it

was determined that FFT, PSD, and RMS approaches should be pursued.

It was found that different crate types, fill levels and filling materials led to a large

variance in measurement results and thus to the differentiability of contents and fill

level. The respective differences were recognizable in the measurement data, but due

to the amount of variation, a manual evaluation was not performed. It was decided

that an algorithm based on artificial intelligence should be applied. This work

describes the details about the design of a data pipeline in order to process the data.

Beside information about the utilized software tools, also details about the artificial

intelligence methods as well as the constructive design of the boxes are provided.

Keywords: artificial intelligence, data acquisition, data pipeline, machine learning,

oscillations, storage box.

Creation of a Data Pipeline to Determine the

Filling Level of Storage Boxes

J. Kneifel, S. Chmielewski, R. Roj, R. Theiß and P.

Dültgen

Forschungsgemeinschaft Werkzeuge und Werkstoffe e.V.,

Remscheid, Germany

Proceedings of the Eleventh International Conference on

Engineering Computational Technology
Edited by B.H.V. Topping and P. Iványi

Civil-Comp Conferences, Volume 2, Paper 7.3
Civil-Comp Press, Edinburgh, United Kingdom, 2022, doi: 10.4203/ccc.2.7.3

Civil-Comp Ltd, Edinburgh, UK, 2022

2

1 Introduction

Storing a variety of items within a warehouse in an industrial context is usually done

using plastic or metal boxes stacked on a shelf. Those kind of storage facilities rely

mostly on manual inspection to find out the filling levels of boxes containing various

bulk goods. A few examples for those fillings are screws, nuts, and bolts made of

metal, plastic, or wood. Approaches to automate such tasks in inventory management

and logistics utilize cameras and some type of image classification. The detection is

therefore limited to boxes that sit on a shelf and those systems tend to be expensive.

Usually, it requires extensive modification of the shelves and the storeroom, hence

call for a high investment. It offers great inducement to develop a low-cost, easy to

install and more versatile alternative.

To expand on the idea to be able to overview the status of inventory, a hub is set

up to communicate between the boxes and the user and acts as a digital twin for the

warehouse. The intention is to develop a smart box that works on any surface as long

as it is within the reach of a local wireless area network and does not require any

further modification of the facility. Another requirement is to only incorporate low-

budget parts and make use of open-source software to further lower the estimated

price and therefor the barrier of entry.

The detection is achieved by analysing the resonance response of the boxes from a

stimulus given by a vibration motor that produces an oscillating force across a single

axis (cf. Figure 1).

The pipelines in the development process are split between the training and the

evaluation phase. After the initial model creation, the training parts will be deactivated

and the system will be running in pure detection mode. It will do scheduled filling

level detections in set time intervals and automatically present the updated values on

a website giving the user the status of the boxes without the need to manually do

inventory.

Figure 1: CAD-model of a typical storage box and FEM-model indicating

oscillations

3

2 Methods

The entire project is realized in python and several library-add-ons, except for the

code running on the microcontroller nodes, which requires C++. The vibration is

picked up by a MEMS (microelectromechanical system) accelerometer and the sensor

signal is transported to the hub with an Arduino compatible microcontroller. The raw

data gets saved in the hub, which is a SoC (system on a chip) with a file storage, a

database, and a webserver running all the data engineering, data science, machine

learning, and data distribution pipelines as well as a framework to manage the

inventory.

To achieve a scalable solution that will be robust and reliable in operation, but also

easy to expand, the implemented pipelines to orchestrate data flow with Kedro were

optimized [1]. Many operations are performed each time new inputs are fed into these

data pipelines with the ability to remote control certain parameters via a CLI

(command line input) and REST-API (representational state transfer application

program interface). All data processing after model deployment is done in the hub, so

if there will be updates to the algorithm, it can be uploaded from afar without the need

to reprogram.

Figure 2: Pipeline for transforming and processing data for training machine

learning model

The pipelines evolve around the data storage that also acts as a database for the

inventory management system (cf. Figure 2). There is a training phase in which a

dataset with fingerprints of different filling levels is collected to train a machine

learning model and an evaluation phase that executes it after deployment. Both phases

share the same data engineering code as it maintains the architecture, which is used

4

for analytics and transforms the data into what is expected from the model. The dataset

contains entries with a variety of filling materials and corresponding levels which was

generated on a test bench over a long-term trial.

3 Results

At first, new sensor data is transmitted from one of the box nodes to the hub on which

it enters the data engineering and data science pipeline. The raw data contains a table

with timestamps, acceleration data, and, while in training phase, a label of the filling

level saved to a CSV file. It gets parsed into a pandas data frame before any doubles

and inconsistencies get filtered out [2,3], so that every datapoint consistently has the

same length and sample rate. The featurization is handled by Scipy [4], giving a

fingerprint in form of PSD (power spectral density), FFT (fast Fourier transform), and

RMS (root mean square) data tables. While in training phase, the results get further

preprocessed to be split into train, test, and validation data before entering the

TensorFlow framework to create the neural network model [5]. The training is

complete once it reports a sufficient accuracy. After deployment, the data gets

imported directly into the model to estimate the inquired filling level, which is send

to a database or an API from which the InvenTree inventory management system pulls

the current values [6].

Initial measurement data suggested that the determination of the levels of any

product can be tracked with sufficient accuracy using artificial intelligence. It is not

necessary to mount actuators and sensors on opposite walls, and from a design point

of view, integration on the underside of the storage box is associated with the least

effort as well as sufficiently accurate results. The entire electronics can thus be

integrated in a small area and do not have to be connected with cables over larger

distances.

As a result, it was possible to determine that no major technical restrictions had to

be observed in order to design a vibration-optimized storage box. In addition to the

integration of the electrical components in a housing, the same properties as for

conventional open fronted storage boxes, such as walls reinforced by ribbing or the

application of a high load, had to be taken into account.

More detailed concepts for modular mounting of the measuring electronics were

developed. Both modular retrofit-ability and large-scale production were considered.

Screw-in, clip-in, and slide-in solutions were evaluated, with emphasis on contact

pressure. This was important to ensure that there is no gap between the storage box

and the measuring box and that the connection for vibration transmission is

guaranteed.

4 Conclusions and Contributions

The solution solves a common task that requires constant attentiveness like making

inventory to an automatic process running in the background. To realize this in a

scalable manner while staying on a small budget, it requires the development of

methods, like using accelerometers and vibration analysis for filling level detection as

5

well as incorporation of modern technologies in data orchestration and machine

learning.

The goal was to make inventory management smarter and easier to handle while

keeping the costs low. The benefit of neural networks was used to simplify the

detection process of filling levels making use of its black box characteristic, which

proved to be outstanding in handling noisy signals and inconsistencies in datasets to

a certain degree. Implementing data pipelines further streamlines the data engineering

and data science part to a degree that it is manageable on a big scale, making this

process reproduceable, expandable, and seamless. It shows that creating pipelines and

a robust data infrastructure can be beneficial for both, large and small endeavours.

Due to the nature of open-source code and the implementation of standardized

protocols, it is possible to connect various endpoints with another, making it possible

to utilize the always up-to-date inventory data and plan ahead in areas like stock and

order management or logistics.

The project has hit three milestones: 1) the substitution of cameras to low-budget

accelerometers (also advantageous for privacy compliance), 2) the detection of filling

levels by interpreting the resonance response using machine learning, and 3) the

orchestration of data flow through pipelines on a scalable platform (cf. Figure 3).

It shows that it is possible to automate inventory management for pourable bulk goods

stored in boxes. To keep the costs as low as possible, it is advisable to handle the

training of the machine learning model in the cloud and let the hub on the edge execute

the predictions after deployment. Therefore, also lowering the technical requirements

for the system is on premise. Pretrained models will be included in the hub so that it

can be used for common goods immediately and only needs retraining in unforeseen

cases that produce very inconsistent filling level estimates.

Figure 3: Graph of data pipeline for storage box deployment

Acknowledgements

The research is supported by the Federal Ministry of Economic Affairs and Climate

Action the German Federation of Industrial Research Associations (AiF) with the

funding numbers ZF4215311AB9 and ZF4744402AB9.

6

References

[1] S. Alam, L. Bàlan, G. Comym, Y. Dada, I. Danov, L. Hoang, R. Kanchwala, J.

Klein, A. Milne, J. Schwarzmann, M. Theisen, S. Wong, “Kedro, Version

0.17.7”, https://github.com/kedro-org/kedro, Accessed 02 February 2022.

[2] W. McKinney, S. Van der Walt, J. Millmann, “Data Structures for Statistical

Computing in Python”, 2020, 51-56.

https://conference.scipy.org/proceedings/scipy2010/pdfs/mckinney.pdf,

Accessed 02 February 2022.

[3] The pandas development team: “Pandas, Version 1.2.4”,

https://github.com/pandas-dev/pandas, Accessed 06 January 2021.

[4] V. Pauli, G. Ralf, E. Travis, Oliphant, M. Haberland, T. Reddy, D. Cournapeau,

E. Burovski, P. Peterson, W. Weckesser, J. Bright, S.J. Van der Walt, M. Brett,

J. Wilson, K.J. Millman, N. Mayorov, A.R.J. Nelson, E. Jones, R. Kern, E.

Larson, C.J. Carey, İ. Polat, Y. Feng, E.W. Moore, J. VanderPlas, D. Laxalde,

J. Perktold, R. Cimrman, I. Henriksen, E.A. Quintero, C.R. Harris, A.N.

Archibald, A.H. Ribeiro, F. Pedregosa, P. Van Mulbregt, “SciPy 1.0

Contributors: Scipy, Version 1.6.3”, https://github.com/scipy/scipy, Accessed

20 January 2021.

[5] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado,

A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,

M. Isard, R. Jozefowicz, Y. Jia, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,

M. Schuster, R. Monga, S. Moore, D. Murray, C. Olah, J. Shlens, B. Steiner, I.

Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O.

Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, “TensorFlow:

Large-scale machine learning on heterogeneous systems”, 2015,

https://github.com/tensorflow/tensorflow, Accessed 01 February 2022.

[6] The InvenTree development team: “InvenTree, Version 0.6.0”,

https://github.com/inventree/InvenTree, Accessed 06 January 2022.

