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Abstract 
 

Turbulence is a well-ploughed area in computational fluid dynamics (CFD). However, 

modern DNS-LES-RANS techniques are still computationally heavy and/or 

inaccurate at high Reynolds numbers. Due to lack of fine-granularity and optimality 

with manual tuning of model parameters, an opportunity for machine learning 

emerges. This paper delivers accurate turbulence models dynamically, by combining 

decades old scientific turbulence foundations with novel Physics Informed Machine 

Learning (PIML) techniques. As a starting point, we train different regression and 

neural network algorithms over Isotropy Cases, yet we plan to extend our work with 

all anisotropy cases that can be represented within the universal Lumley triangle. 
 

Keywords: physics informed machine learning, turbulence, anisotropy, neural 

networks, OpenFoam 
 

1  Introduction 
 

Turbulence has been one of the most important natural phenomena that impacts the 

accuracy of computational fluid models. Turbulence modelling becomes inevitably 

critical for most engineering problems of interest especially at high Reynolds 

numbers. Direct Numerical Simulations (DNS) that solve Navier-Stokes (NS) 

equations in its full form (time & space) are accurate, but computationally infeasible. 
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Reynolds Averaged Navier Stokes (RANS) methods address this problem by 

averaging all flow related parameters in the NS equations, thus saving serious amounts 

of computational load. However, RANS equations involve Reynolds stresses that 

cause the so-called “closure problem”. 

 

In this paper, a generic framework for training anisotropy invariant (AI)-based [1, 

2, 3] Reynolds Stress Models (RSM) is developed. The AI-model makes use of a 

constitutive relation between known and unknown tensors. The relations are weight 

functions of second (II) and third (III) invariants of the anisotropy tensor of Reynolds 

stresses (𝑎𝑖𝑗) and a turbulence Reynolds number (Reλ
∗ ). These functions are 

constructed between the limiting states (1C-2C-3C) of turbulence as illustrated in the 

Lumley Anisotropy Triangle [4, 5] in Figure 1 where Reλ
∗  ranges between zero to 

infinity (Reλ
∗ : 0→∞). This training framework is used to reduce the computational 

cost of turbulence modelling while preserving accuracy. In the case of determining 

the coefficients of this function, different Machine Learning (ML) methods are 

proposed.  

 

As a starting point, this work considers the isotropic turbulence cases where the 

second and third AI are zero. Therefore, only the impact of turbulence Reynolds 

number, Reλ
∗   needs to be included in the RSM model. 

 

Physics Informed Machine Learning (PIML) or Physics Informed Neural 

Networks (PINNs) [6] utilize the learning power of NN by exploiting physical laws 

that govern the processes described by series of partial differential equations. We will 

initially focus on predicting parameters of the transport equation used by Jovanovic´et 

al. [1] as detailed in Section 2 (Methodology). While there are similar proposals for 

using ML in turbulence modelling, most attempts rely on either finding the parameters 

of k-ϵ method [7] or concentrate on limited turbulence problems [8]. We contribute to 

turbulence modelling by creating a constitutive equation-based [1] ML framework. 
 

 
Figure 1: Values of invariant functions at limiting states of turbulence. Adapted 

from [5] 
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2  Methods 
 

A Reynolds Stress Transport (RST) model is introduced by Jovanović et al. [1] that 

offers an alternative constitutive relation for finding Reynolds Stress term for 

homogeneous turbulence as: 

 
𝜕𝑢𝑖𝑢𝑗

𝜕𝑡
=   𝑃𝑖𝑗 + 𝒞𝑎𝑖𝑗 + 𝑎𝑖𝑗𝑃𝑠𝑠 + ℱ (

1

3
𝑃𝑠𝑠𝛿𝑖𝑗 − 𝑃𝑖𝑗) − 2𝒜𝜖𝑎𝑖𝑗 −

2

3
𝜖𝛿𝑖𝑗   (1) 

  
where 𝒜, 𝒞, ℱ correspond to anisotropy invariant functions and 𝑎𝑖𝑗 = (𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅/2𝑘) −

1/3𝛿𝑖𝑗 is the anisotropy tensor of the Reynolds stresses. These functions can be 

approximated by calculating their values on limiting states of turbulence with one or 

two components. When 𝒜 is written in terms of its weighing functions, one obtains 

the following relation: 

 

𝒜 ≅ {
(1 − 𝐽)𝒜1𝑐 + 𝐽𝒜𝑖𝑠𝑜 , 𝐼𝐼𝐼𝑎 > 0

(1 − 𝐽)𝒜2𝑐−𝑖𝑠𝑜 + 𝐽𝒜𝑖𝑠𝑜 , 𝐼𝐼𝐼𝑎 < 0
  (2) 

 

Lumley [4] postulated that for limiting states of isotropy (J=1, 𝒜=𝒜iso) when 

turbulence has two components, the following relations can be written between 𝐼𝐼𝐼𝑎 

and 𝐼𝐼𝑎 : 

𝐼𝐼𝑎 =
2

9
+ 2𝐼𝐼𝐼𝑎  (3) 

 

and for isotropic turbulence, 

𝐼𝐼𝑎 = 𝐼𝐼𝐼𝑎 = 0  (4) 

 

Using Equations 2, 3, 4 it can be shown that J equals to:  

𝐽 = 1 − 9 (
1

2
𝐼𝐼𝑎 − 𝐼𝐼𝐼𝑎)  (5) 

 

Now that J is resolved in terms of invariant functions and limits are set, a new 

weighting function for finding 𝒜 must be set. According to [1], 𝒜 can be written as: 

 
𝒜 → (1 − 𝒲)𝒜𝑅𝑒𝜆

∗→∞ + 𝒲𝒜𝑅𝑒𝜆
∗→0   (6) 

 

where 𝑅𝑒𝜆
∗ is a function of q (RMS of velocity fluctuation), 𝜆𝑔 (dissipation length) 

and 𝜈 (viscosity): 

𝑅𝑒𝜆
∗ =

𝑞𝜆𝑔

𝜈
  (7) 

 

Jovanović [1] represented the ratio of 𝜆𝑔 to 𝐿𝑔 (integral length) as a carefully tuned 

function of 𝑅𝑒𝜆
∗:  
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𝜆𝑔

𝐿𝑔
= −0.049𝑅𝑒𝜆

∗ +
1

2
(0.009604𝑅𝑒𝜆

∗2
+ 10.208)

1
2  (8) 

 

Equation 8 results in 0 when 𝑅𝑒𝜆
∗ → ∞ and 1.597 when 𝑅𝑒𝜆

∗ → 0. Therefore, 𝒲 can 

be represented as, 

𝒲 =
𝜆𝑔

1.597𝐿𝑔
  (9) 

 

Which is illustrated in Figure 2. Note that we skip the details for obtaining 𝒞, ℱ here 

for brevity and refer the readers to [1] for details. 
 

 
Figure 2: The relation between Weighting function and 𝑅𝑒𝜆

∗ in [1]. 

 

In this paper, we aim to accurately predict the 
𝜆𝑔

𝐿𝑔
 ratio using PIML to find the 

coefficients denoted in Equation 1 as follows: 
 

1- For different Reλ
∗  (0→50) 

2- Obtain  
λg

Lg
  from DNS data for forced isotropic cases 

3- Use the selected ML algorithm to train with DNS data 

4- Obtain a new model by predicting a new relation for  
λg

Lg
  and Reλ

∗  

5- Confirm RST model by using decaying isotropic cases. 
 

3  Results 
 

We currently present data for one isotropic forced turbulence case here. Using 

OpenFoam CFD software, models with different granularities are prepared (e.g. 

64x64x64) for periodic boundary conditions and DNS results for velocity and 

Reynolds stresses over time (e.g. t=60 seconds and step=0.001 seconds) were 

gathered. Probes with different coordinates are placed in x-y-z axes. Figure 3 depicts 
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the meshed domain of analyses. For testing the validity of the turbulence, evolution 

of anisotropy tensor components (𝑎𝑖𝑖) of the data taken from the center of the solution 

domain over time are plotted (Figure 4). They converge to zero (0) as it is supposed 

for isotropic turbulence.  Figure 5 is the energy spectrum of the turbulence data which 

is compliant with Kolmogorov’s (-5/3) power law. Dissipation of turbulence to 

viscosity at the end can also be observable via this graph.  In our full paper, we will 

be presenting results from more isotropic turbulence cases with higher-granularity 

and longer times. Purpose of these experiments are to obtain the verified DNS results 

of Table 1 in (Eswaran & Pope) [10] for machine learning models. This way we will 

first complete steps 1-2 in our methodology followed by steps 3-4-5 for 

PIML modelling of turbulence. 
 

 
Figure 3: 64x64x64 mesh and view of velocity component in forced box simulation. 
 

 
Figure 4: Change of diagonal components of the anisotropy tensor over time 
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Figure 5: Log-log scale for power spectrum density (PSD) and redline illustrating 

Kolmogorov slope of (-5/3). After this region the turbulence dissipates. 

 

4  Conclusions and Contributions 
 

This work aims to deliver accurate turbulence models by combining anisotropy 

invariant (AI)-based Reynolds Stress Models (RSM) with Physics Informed Machine 

Learning (PIML). We started obtaining DNS data for isotropy cases using OpenFoam 

CFD software and we will train different ML algorithms over these data in the future. 

We plan to extend our work with all anisotropy cases that can be represented within 

the universal Lumley triangle. 
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