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Abstract 
 
Particle system analysis is important but costly in solving many physical problems 
since particles are the basic composition of almost everything, and machine learning 
is increasingly used in optimization for numerical simulations. The most important 
and difficult job is to make the particle system understandable by the machine learning 
model, which usually called feature extraction. In this paper, a novel method and an 
accurate physical interpretation for feature extraction of cascade defects data, an 
important particle system in reactor pressure vessel analysis, was proposed. Four 
strategies were designed to extract features from cascade defects data in which the 
DAPP shows the best performance. This study shows that feature extraction based on 
physical information has a positive significance for the analysis of particle systems 
and provide a theoretical support for improving the physical interpretability of 
machine learning models on particle systems. 
 
Keywords: particle system, feature extraction, machine learning, numerical 
simulation, physical interpretability, reactor pressure vessel 
 

1  Introduction 
 

Particle system analysis is important in solving many physical problems since 
particles are the basic composition of almost everything, like structural materials, 
medicine, fuel rods, etc. [1-2]. Many years past, numerical simulation has become the 
most important method in study of particle systems due to its efficiency, safety and 
cost saving [3-4]. The classic numerical particle models include molecular dynamics, 
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neutron physics, etc. However, the calculation of complex nonlinear problems and 
partial differential equations becomes the main bottleneck of the development of 
numerical simulation with larger scale and higher precision [5-7]. The conventional 
practice is to further simplify the model to achieve a rough simulation at the expense 
of accuracy, which makes a large gap with practical applications. Machine learning 
makes things easy due to its powerful fitting ability in solving complex nonlinear 
problems and partial differential equations, as we can see in many fields like natural 
language recognition and image recognition [8-10]. In particle systems, the most 
important and difficult job is to make the particle system understandable by the 
machine learning model, which called feature extraction, and a set of interpretable 
features will make the model more accurate and instructive for understanding the 
physical process [11-12]. 

 
This paper presents a method for feature extraction from the perspective of physical 

interpretability with the cascade defects, a representative numerical particle system in 
reactor pressure vessel analysis. Specifically, given the cascade defects, simulated by 
the molecular dynamics, our method aims to extract key physical features for mining 
of the cascade defects clusters. Different physical features was proposed and a 
physical explanation was given for their effect as to why these features can get a 
different result for cascade defects recognition. 

 

2  Methods 
 
In this part, the methods employed in this paper are introduced as follows including 
data preparation, feature extraction method, clustering algorithm and model validation.  
Data Preparation: The cascade defects data was obtained by MISA-MD, the fastest 
molecular dynamic simulation software for simulating radiation cascade in reactor 
pressure vessels developed by USTB [13], and the open source address is 
https://hpcde.github.io/p/open source/. The atoms are all of Fe with a BCC crystal 
structure and the lattice constant is 2.85532. The temperature is 600K and the box size 
is [80, 80, 80], which means that the size of xyz direction is 80 times the lattice 
constant. The result of the last time step was selected which was composed of xyz 
coordinate of 1,024,000 atoms. Different energies and directions of neutron were 
simulated including 3 energies of 10kev, 30kev, 50kev with three directions of 122, 
135, 235 respectively, each of which has been simulated 50 times. Wigner–Seitz 
algorithm [14] was employed to recognize the interstitial atoms and vacancy from the 
last step simulation data and Union-Find algorithm [15] was employed to divide the 
interstitial atoms and vacancy into defects clusters, which are generally regarded as 
spherical particles. Finally, 4483 clusters were obtained, as shown in Figure 1. Our 
goal is to classify the clusters that are similar among these 4483 cascade defects data 
through clustering algorithm. 
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Figure 1 The structure of cascade defects 

 
Feature Extraction Method: Four strategies are designed to extract features from 
cascade defects data, as shown in the Table 1. DPC represents particle-to-Center of 
mass distance, where the center of mass here is calculated from all particles in the 
cluster, and DPP represents particle-to-particle distances. DAPC and DAPP consider 
one more feature of angle than DPC and DPP. 
 

Features Particle-Center of mass Particle-Particle 

Distance DPC DPP 
Distance + Angle DAPC DAPP 

Table 1 Four strategies to extract features 
Clustering Algorithm: HDBSCAN [16] was employed as the clustering algorithm 
to the cascade defects data. HDBSCAN is a combination of DBSCAN algorithm [17] 
and hierarchical clustering algorithm. The algorithm has the same performance as the 
DBSCAN clustering algorithm and more intuitive parameters. Besides, the 
HDBSCAN algorithm can deal with clustering problems with different densities more 
effectively, which is the best choice for clustering cascade defects data.  
Model Validation: Silhouette Coefficient [18] was employed to evaluate the quality 
of the feature strategy, which is a most common evaluation methods used in clustering 
model. 
 
3  Results 
 
The score of Silhouette Coefficient and noise are listed in the Table 2. As shown in 
the table, the DAPP strategy shows the best performance with a highest Silhouette 
Coefficient and a lowest noise value. Specifically, DPP strategy shows a much higher 
score than DPC strategy when take the particle-to-particle distance as the only feature 
with an almost identical but very high noise value. That is because features that only 
contain distances can only roughly describe the density of clusters, but not feasible to 
describe the morphology of clusters very well, so these two strategies show very poor 
performance in recognizing cascade defects. The score of Silhouette Coefficient of 
DPAC has been greatly improved and the noise value has dropped a lot when not only 
distance but angle are considered. The noise value of DAPP has dropped further when 
take particle-to-particle distance and angle rather than particle-to-center of mass 
distance and angle as the feature compared with DAPC.  
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Feature Strategy Silhouette Coefficient Noise (unrecognized clusters) 

DPC 0.44 868 

DPP 0.71 860 

DAPC 0.71 219 

DAPP 0.71 111 

Table 2 The score of Silhouette Coefficient and noise with different feature strategies 

Schematic diagram of the DAPC and DAPP with an example cascade defects was 
shown in Figure 2, which are two similar clusters, (a) and (c) show the same pentagon-
shaped clusters and (b) and (d) show another cluster which add a tail consist of particle 
6 and particle 7 to the pentagon-shaped cluster. From the perspective of the two cluster 
morphology, they have strong similarities which are usually divided into one category. 
Under the DAPC strategy, the distance and angle values of these two similar clusters 
are completely different, while only the features of the tail part (particle 6 and particle 
7) change with exactly the same values in terms of the pentagon part when the DAPP 
strategy is used. Consequently, such clusters can be classified into the same category. 
From the point of view of the physical information, the analysis above provides an 
accurate explanation for the pros and cons of these feature strategies to recognize the 
cascade defect system.  

 
Figure 2 Schematic diagram of the DAPC and DAPP with an example cascade 

defects 
 

 

4  Conclusions and Contributions 
 
This paper proposes a novel method and an accurate physical interpretation for feature 
extraction of cascade defects data, an important particle system in reactor pressure 
vessel analysis. The comparison of the four feature strategies shows that the DAPP 
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strategy has significant advantages than others in recognizing cascade defects. That is 
because the center of mass based features may ignore many similar clusters and 
classify them into different categories. This study shows that feature extraction based 
on physical information has a positive significance for the analysis of particle systems. 
This work can be extended not only for clustering of cascade defects, but also for 
other machine learning studies on particle systems like feature extraction of neural 
network potential functions which can provide a theoretical support for improving the 
interpretability of machine learning models on particle systems. 
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