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Abstract 
 
AI components (e.g., Deep Neural Networks) are increasingly used in unmanned 
Aerospace systems for safety-relevant applications. Rigorous Verification and 
Validation methods for such components are still in their infancy and thus, monitoring 
of the AI's behavior during runtime is essential. In this paper, we will present a 
runtime-monitoring architecture, which combines the advanced statistical analysis 
framework SYSAI (System Analysis using Statistical AI) with temporal and 
probabilistic runtime monitoring carried out by R2U2 (Realizable, Responsive, and 
Unobtrusive Unit). Learned statistical models of complex systems with AI 
components are produced by the SYSAI framework and provide detailed information 
to enable the R2U2 runtime monitor to efficiently perform advanced safety and 
performance checks in nominal and off-nominal conditions. We will present initial 
results of our tool set and architecture on a case study, a DNN-based autonomous 
centerline tracking system (ACT). 
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1  Introduction 
 

AI components such as Deep Neural Networks (DNNs) have found their way into 
many complex aerospace systems. In particular in autonomous aircraft, such 
applications are safety-critical, and failures might led to loss of vehicle and mission, 
or even to loss of life. Yet, such systems need to operate properly under a wide variety 
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of different operational and environmental conditions, as well as under failures. 
Rigorous Verification and Validation (V&V) is mandatory, yet V&V techniques for 
DNNs are still in their infancy and can often only provide relatively weak guarantees. 

In this paper, we will present a runtime-monitoring approach, which combines 
advanced statistical DNN analysis techniques with temporal, model-based, and 
probabilistic runtime monitoring. For the statistical analysis and model-building, we 
use our statistical framework SYSAI (System Analysis using Statistical AI) [3,2,5,4] 
our flexible statistical learning framework for V&V and analysis of complex and high-
dimensional cyber-physical systems with AI components. The R2U2 (Realizable, 
Responsive, and Unobtrusive Unit) [8,7,1] is an on-board monitoring system to 
continuously monitor system and safety properties of a cyber-physical system or its 
components using Temporal Logics and Bayesian reasoning. 

Learned statistical models of the complex system and its AI components, which 
are produced by SYSAI during V&V provide detailed information to enable the R2U2 
runtime monitor to efficiently perform advanced safety and performance checks in 
nominal and off-nominal conditions and to perform model-based prognostics. R2U2 
results can, for example, be used to switch between different AI components for better 
performance. Within an assurance architecture, R2U2 can function as a safety 
monitor, which can initiate a mitigation from a poorly performing or unsafe DNN 
toward a more safely operating component. 

 
 

 

2  Methods 
 

Our architecture for monitoring of the complex AI component, using the R2U2 
runtime monitor. Important information for the R2U2 properties are produced by 
SYSAI during statistical analysis of the system at design and V&V time. For a 
synergistic combination of both tools, we propose a draft of a process as shown in the 
figure. 

Based upon detailed system requirements, the system with AI components is 
developed and the DNN(s) are trained using training data. At this V&V stage, SYSAI 
can be used for analysis of training data, characterization of safety regions in a high-
dimensional state space, as well as analysis of the system’s behaviour under failures 
[5,4]. Analysis results also provide feedback to the designer. The SYSAI framework 
and the underlying models and algorithms are described in detail in [3]. SYSAI has 
been used for the analysis of several complex and safety-critical aerospace systems 
[2,5,4]. 

After system development and testing, the system is being deployed. At this stage, 
our R2U2 runtime monitoring architecture (lower half of the figure; inspired by [6], 
Fig. 1) is active while the system is in operation. 

The Deep Neural Network (grey box) receives inputs from the AC and processes 
them. The results (e.g., estimated position of the AC on the runway) are then passed 
through the RTA switch back to the system, e.g., the aircraft controller. In nominal 
operations, the RTA switch is set to route the signals from the AI component to the 
system. In parallel, R2U2 receives the system signals, as well as signals from the AI 
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component. Without affecting the overall system behaviour (unobtrusiveness), a 
multitude of temporal and probabilistic properties can be checked in real time. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1:  Tool chain and process for the combination of SYSAI and R2U2. 

 
The statistical models and results, produced by SYSAI, are used to define and 

customize properties to be checked by R2U2 (vertical red arrow). The R2U2 output 
is used to control the RTA switch: in case, R2U2 detects a violation of important 
safety/performance properties, the RTA switch can be turned to use a fallback 
component instead of the AI component to retain system safety and (at least limited) 
performance. Multiple fallback methods might be provided, ranging from algorithmic 
components (e.g., simple dead reckoning) to entering a fail-safe mode, stopping the 
AC, and contact a remote operator. 
 

The information passed can range from simple threshold parameters, whose values 
have been determined by SYSAI’s safety-boundary characterization. In that case, 
SYSAI’s advanced capabilities for the geometric characterization of safety 
boundaries can be used for setting up efficient R2U2 property checking. 
 
 
3  Results 
 
For our experiments, we used an Autonomous Centerline Tracking (ACT) system. 
Here, a forward-facing camera mounted on the wing provides input to a DNN. Its 
outputs, the estimated distance from the centerline CTE and the heading (he) relative 
to the runway are then fed into a standard fixed-gain controller that operates the front 
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wheel of the aircraft as it rolls down the runway at a slow speed. Experiments were 
carried out using the X-Plane Flight Simulator (www.xplane.com).  

 
 

 

 

 

 

 

 

 

 

 

Figure 2:  Safety-envelope: surface shows estimated maximal CTE value during a 
run over initial position CTE and heading of the aircraft he. The safety envelope at a 

given threshold of 40ft is shown as a red line. 

 
     The DNN is a multi-layer feed-forward network with ReLU nodes and 
implemented in TensorFlow. For the setup of the R2U2 specifications for nominal 
operation, it is, among others, important to establish reasonable safety thresholds for 
the neural network outputs using SYSAI. 
      Figure 2 shows how the safety envelope for ACT under different initial conditions 
CTE and he develop. For a small threshold, only runs with initial values close to 
CTE=0 and he=0 are successful, i.e., that our safety conditions is never violated during 
a run. This safety envelope becomes larger as the value for Θ increases. The red line 
in Figure 2 shows its boundary for Θ=40ft. SYSAI has been used to effectively create 
a model of this surface; a geometric characterization of the boundary can be obtained 
from SYSAI. 

The information obtained during the SYSAI analysis is then used to set up the 
R2U2 properties and monitors. We can distinguish between three different categories 
of R2U2 properties: (a) universal properties, (b) temporal properties, and (c) 
probabilistic properties. Universal properties are supposed to be valid throughout the 
entire operation and are necessary to define many safety properties. For example, 
makes sure that the speed of the aircraft is always limited and that the aircraft never 
rolls backward. Within the R2U2 monitor, such properties are usually linked to 
conditions or system modes. In our example, this condition is only to be checked if 
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the ATC system is on and the AC in taxi mode. This will yield the temporal formula       
H(ATC_on & AC_mode = taxi -> v_w < 5m/s & 0 <= v_w)  (1)        

Temporal R2U2 properties can be used to specify include (a) overall performance 
properties, e.g., the end of the runway should be reached within 4-5 minutes, (b) 
filtering of transients. For example, the outputs of the DNN should always lie in a 
certain range, e.g., he∈[−10,10]. However, transients yielding values outside that 
range should be tolerated if they are short enough, for example, less than 2 seconds, 
(c) limiting the number of occurrences of events. For example, it can be specified that 
no more than 3 transients occur within a period of 20 seconds. Such a property can 
also be seen as a discrete form of specifying error rates. 

Such properties can be defined using the original signals (e.g., cte, he) or results of 
signal processing. In our architecture, we can use following algorithms and methods 
to process the input signals before discretizing them into a Boolean value and handing 
them to the Temporal logic engine. Signal rates, as approximation of signal 
derivatives are used to help monitor the system dynamics and integration of signals 
over time is used to check, for example, for changes of biases over time. Fast Fourier 
Transformation of signals are helpful in detection of oscillations. Such effects, like 
pilot-induced oscillations can lead to dangerous situations that need to be avoided. 
Finally, Kalman filtering can be used for sensor fusion or to check the behaviour of a 
signal against a given dynamical model. In this case study, Kalman filters have not 
been used.  
 

4  Conclusions and Contributions 
 
In this paper, we have presented an advanced architecture to monitor the safety and 
performance of a complex AI component (e.g., a DNN) within an aerospace system. 
Inspired by the ASTM runtime assurance architecture, we are using the R2U2 runtime 
monitoring system to dynamically check numerous properties, using temporal logic 
observers, Bayesian reasoners, and signal processing. 

Our SYSAI statistical analysis framework can provide models, parameters, and 
other information to the R2U2. This information is used to define, formulate, and 
customize complex, yet justified properties that go ways beyond traditional range and 
rate checking monitors. 

The information passed can range from simple threshold parameters, whose values 
have been determined by SYSAI’s safety-boundary characterization. In that case, 
SYSAI’s advanced capabilities for the geometric characterization of safety 
boundaries can be used for setting up efficient R2U2 property checking. 

During system deployment, the R2U2 continually monitors the system, and its 
output is used to control the RTA switch: in case, R2U2 detects a violation of 
important safety/performance properties, the RTA switch can be turned to use a 
fallback component instead of the AI component to retain system safety and (at least 
limited) performance. 

Future work will include the use of dynamic statistical reasoners and prognostic 
engines to extend this architecture into a fully statistical monitoring system, which 
can reason and decide with probabilities and confidence levels—a prerequisite for 
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monitoring systems like Deep Neural Networks. We are also planning to work toward 
the use of this architecture and process in certification and risk management. 
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