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Abstract 
 

This paper focuses on the modelling of the radiative transfer equation in a 2-D walled 

domain with participative gases. Aiming to reduce the computational cost of the 

physical resolution, a neural network-hybrid approach is introduced to model the 

radiative transfer equation. The solution of the radiative transfer equation is learned 

through two multi-layer perceptron networks whose inputs are the wall temperatures 

and the length and the temperature of the domain elements, and whose outputs are 

radiation intensities and transmissivities. To validate the approach, the results are 

compared with those of a proven in-house physical radiation solver in which the 

discrete transfer ray method is used to numerically solve radiative transfer equation 

with participative gases. To model the spectral behaviour of gases, the physical solver 

uses the spectral narrow band model with the Curtis-Godson modification. The 

dependency of the wall emissivity with the spectral wavelength was neglected. 
 

The approach was tested for a typical hydrocarbon combustion, at constant 

atmospheric pressure, with a range of wall and gas temperature between 300K to 

3000K, for a fixed CO2 to H2O molar ratio. Comparison between the neural network 

hybrid approach and the physical solver are presented. For an academic use case 

discretized over 5 cells, precision of the hybrid approach shows a relative error under 

3% with a speed-up factor around 10. First results are rather promising in terms of 

wall heat fluxes. The model could be extended by varying the gas composition and/or 

pressure. 
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1  Introduction 
 

The accuracy and the numerical cost of simulating radiative heat transfer is strongly 

related to the choice of mathematical model, discretization methods and the 

assumptions made regarding the behaviour of the participative gases. The high cost is 

related to the resolution of the Radiative Transfer Equation (RTE), which implies both 

a spatial and an angular integration [1]. An additional difficulty comes from the fact 

the gas behaves as a non-transparent medium in which the transmissivity depends on 

the wavelength. Indeed, combustion products such as carbon dioxide and steam act as 

participative gases to the radiation, either by absorbing or emitting radiant energy. 
 

Proposed by Lockwood and Shah [2], the Direct Transfer Radiative Method 

(DTRM) is used for its acceptable compromise between accuracy and computational 

cost. The DTRM solves representative rays in discretized space directions that need 

to cover the entire domain.  
 

When the spectral aspects are considered, an additional discretization over the 

wavelengths has to be done. Then, the spectral dependency of the participative gases 

and walls has to be taken into account. One way to calculate the transmissivity of each 

spatial element is to use the Statistical-Narrow-Band (SNB) model [3] with the Curtis 

Godson (CG) modification [4, 5]. 
 

In this work, only the dependency of the gases parameters with the spectral 

wavelength is considered.  The emissivity of the walls is averaged over the infrared 

spectrum. The solution of the RTE using DTRM for a domain with participative gases 

is implemented in an in-house FORTRAN solver co-developed by Air Liquide [6] and 

the EM2C laboratory [7] in the 90’s. This solver is considered to provide high-fidelity 

solutions and therefor it will be used as reference.  
 

The principal limitation of the spectral methods is an unaffordable computational 

cost for most industrial applications. The aim of the current work is to advantageously 

use neural network techniques, more precisely the Multi-Layer Perceptron (MLP) to 

model the radiative transfer faster while maintaining main spectral aspects.  
 

2  Methods 
 

Here, the steady-state radiative transfer equation for a participative, non-scattering gas 

is considered. The transmissivity of a gas column is calculated based on SNB model 

with CG modification. 
 

The DTRM is used to spatially discretize the RTE. The intersection between a ray 

and the meshed domain results in a division of the ray in several elements (see Figure 

1). Note that different rays cross a different number of cells, which leads to a wide 

range of element lengths.  
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It is worth mentioning that the radiative intensities are dependent of spectral 

wavelength in the infrared spectrum. The SNB discretizes this spectrum over 

wavenumber bands of 25 cm-1. 

  

 
Figure 1. Spatially meshed domain with rays shot in various angular directions from 

a specific point of the boundary.  
 

The aim of the present study is to accelerate the calculation of the radiative 

intensities. By use of machine learning, a strategy is proposed to include the spectral 

dependency without explicitly computing it. To do that, the radiative intensities and 

specific mean transmissivities of rays are modelled by two neural networks. Note that, 

although the specific mean transmissivities have the same meaning, they are not actual 

transmissivities.  
 

Figure 2 illustrates the parameters of interest for a representative ray that starts 

from a wall point and arrives on an ending wall by passing through 6 elements. This 

representative ray is also highlighted in Figure 1.    

 

 
 

Figure 2. Illustration of a representative radiative ray described by the temperature 

and emissivity of walls, the temperature, composition, pressure and length of each 

element. 

These parameters are the input parameters of two neural networks. For the first 

one, the outputs is the radiative intensities, while for the second one, the outputs is the 
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specific mean transmissivities. These neural networks can be used to substitute the 

solver’s module where the intensities and the transmissivities are computed 

traditionally. In summary, to solve the RTE with the hybrid model, one needs to: 

• discretize the domain spatially, and set the gas parameters for each spatial 

element, 

• draw rays from each point from the boundary, 

• use the MLPs to predict the radiative intensities of each ray, 

• for each boundary point, sum all the incident rays contribution 
 

The advantage of the proposed model is that these learned rays can be used to 

calculate the radiative intensities for any type of geometry. 

 

3  Results 
 

Firstly, a typical ray with 20 elements was considered. The temperatures and lengths 

of the ray vary from 300K to 3000K, and 2x10-4m to 2m, respectively. The molar 

fractions chosen are 0.194 for H2O and 0.182 for CO2. The remaining molar fraction 

is N2, a non-participative gas. The pressure in the domain is constant at 1 atm. The 

emissivity for the furnace walls was set to 0.25. 
 

50k input samples (wall temperature, length, and temperature of the domain 

elements) for training and 10k input samples for testing the neural networks were 

generated using the latin hypercube method. These inputs were given to another 

physical solver developed specifically for the ray samples. This solver gives the output 

samples (radiative intensities and specific mean transmissivities) for training and 

testing the two MLPs. In what followed, two MLPs were trained to predict the 

radiative intensities and the specific mean transmissivities, respectively. It is worth 

noting that the inputs and outputs of the MLPs were normalized. 
 

Tables 1 summarize the hyper-parameters that were chosen for the two MLPs to 

predict the radiative intensities and the specific mean transmissivities of the sampled 

rays, respectively.   
 

Parameter Radiation intensities Specific mean transmissivities 

Architecture 1 hidden layer with 1025 

neurons 

3 hidden layers with 

998/926/1532 neurons 

Activation functions ReLu Linear/ReLu/ReLu 

Epoch number 350 

Batch size 50 1076 

Validation split 25% 

Loss Function Mean Absolute Error 

Optimizer Adam (learning rate = 0.0005) 

Normalization True 

Table 1: Hyper-parameters of the MLP for prediction. 



 

5 

 

The mean average error for the training and cross-validation of the predicted 

radiative intensities and the specific mean transmissivities are shown in Figures 3 and 

4. The mean average errors for the unseen test samples are 0.02 and 0.05 for radiative 

intensities and specific mean transmissivities, respectively. These MLPs replace the 

solver’s module. 
 

The neural network-hybrid approach for modelling and solving the RTE was tested 

in a 2-D domain. The domain is a 1mx1m rectangular box. The vertical and horizontal 

boundaries were equally divided in 5. From the centre of each wall cell, 20 rays are 

shot in equally angular directions. The typical elements size of rays being 1x10-3m to 

3x10-1m. For the following use case, the temperature of the walls and the gases are 

2500K and 1500K, respectively. 

  

 
 

Figure 3. Mean average error for the training and cross-validation of the radiation 

intensities 

 

 
Figure 4. Mean average error for the training and cross-validation of the specific 

mean transmissivities 
 

The MLP for prediction of the radiative intensities is used for a case where the 

reflective contributions of the incident radiative intensities are neglected. The results 

are shown in Figure 5. For this case, the relative error is under 1%, which validate the 

corresponding MLP training. 
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Latin Hyper Cube sampling technique was used to generate a multitude of rays 

with varying parameters of interest: temperature for the walls and length and 

temperature for each element of the spatial domain. The wall emissivity, the 

composition and pressure of the elements were kept constant and chosen in 

accordance to typical combustion flue gases (CO2 and H2O). 
 

Then, these input samples were used to calculate the radiative intensities at the 

boundaries for each ray element using an in-house classical solver in which DTRM 

with SNB-CG is implemented. In addition, specific mean transmissivities were 

calculated. These calculated radiative intensities and specific mean transmissivities 

were used as the outputs for training two MLPs. In what followed, these learned rays 

were used to predict the incident radiative intensities on the boundaries. A 2-D 

rectangular geometry (1m x 1m) was considered with the wall temperatures 2500K 

and the gas temperature 1500K. The predicted incident radiative intensities were in 

good agreement with those calculated by the physical solver. The hybrid solver was 

10 times faster than the physical solver. 
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