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Abstract 
 

Based on big data technology, according to the nonlinear relationship between mix 

proportion and performance of concrete with multi cementitious materials, the mix 

proportion optimization method of concrete with multi cementitious materials is 

proposed. Firstly, 1443 sets of mixed samples were collected for correlation analysis, 

and the prediction abilities of linear regression, BP artificial neural network and 

support vector machine (SVM) were compared. The prediction model of concrete 

strength and workability based on support vector machine was selected. Secondly, 

the nonlinear optimization model of concrete mix proportion is established by using 

particle swarm optimization (PSO) algorithm and artificial bee colony algorithm 

(ABC). Finally, a series of concrete mix proportions are designed and tested to 

verify the effectiveness of the method. Furthermore, the concrete quality and cost 

control system (Compos) is developed to facilitate the application of this method. 
 

Keywords: concrete; mixture optimization, artificial neural network, support vector 

machine, particle swarm optimization, artificial bee colony algorithm. 
 

1  Introduction 
 

Concrete is a relatively complex material which is composed of cement, water, sand, 

gravel and / or other raw materials. The best concrete mixture should be the lowest 
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cost but meet all performance requirements. For simple four component concrete, 

Bolomey rule has been widely used, and it shows that the ratio of cement to 

water(C/W) is directly proportional to the compressive strength of concrete. Other 

concrete properties, such as workability and durability, are mainly adjusted through 

experience and test. With the continuous development of concrete technology over 

the past decades, the composition of concrete materials has become increasingly 

complicated. Many types of admixtures and additives, such as fly ash, slag, silica 

powder, water-reducing agent, and air-entraining agent, are introduced. Such 

introduction makes a mixture design to be increasingly complex, and the defects of 

the traditional method are gradually becoming apparent.  
 

At present, in the mix design of concrete with multi cementitious materials, the 

main strategy is to improve the traditional methods, such as ACI211.1-91 (R2009) 

and JGJ55-2011. Some other methods have been proposed, such as the mix design 

method of high performance concrete recommended by P.K.Mehta and P.C.AÏtcin 

[1], which is believed that when the volume ratio of cement slurry to aggregate is 

35:65, the concrete will achieve the best working performance and mechanical 

properties, and the recommended mix design procedure is put forward. The Total 

Calculation Method, recommended by J.K.Chen and D.M.Wang[2], further 

establishes the relationship between cement slurry volume and water binder ratio, 

cement slurry volume and aggregate volume. On this basis, the water consumption 

and sand production rate are calculated to complete the mix design. 
 

The absolute volume method is another mixed proportion design method with 

considerable use. H.T.Le[3] designed a self-compacting HPC mixture through a 

method based on Funk–Dinger tight packing theory.  
 

All of the above methods are empirical experimental methods with certain 

theoretical assumptions, and the results are relatively feasible, but not ideal. By 

introducing system analysis and mathematical programming into concrete mix 

proportion design, the optimal mix proportion in mathematics can be obtained. In 

this respect, J.P.Cannon and G.P.Krishna Murti[4] first used the simplex method of 

linear programming, which opened up a new way for mix proportion design. With 

the increasing types of raw materials, B.Chen[5] found that there was a nonlinear 

relationship among raw materials, mix proportion and concrete performance, 

through the correlation analysis of 1078 sets of mix proportion trial mixing records. 

Therefore, a multi-objective optimization model of concrete mix proportion was 

established by using stepwise regression analysis and complex method. 
 

In recent years, with the rapid development of big data and artificial intelligence 

technology, it provides new ways and opportunities for theoretical research and 

solving engineering problems. The so-called big data refers to the research method 

that does not use the shortcut of random analysis (sampling survey), but uses all data 

for analysis and processing. It has the characteristics of 5V, namely volume (large), 

velocity (high), variety (diversity), value (low value density) and veracity 

(authenticity). Its statistical results are more accurate and closer to the facts, which 

provide a new way for the scientific research of concrete. Y.C.Yeh[6] established a 
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concrete mix proportion optimization model based on nonlinear programming and 

genetic algorithm. A.Habibi and J.Ghomashi[7] developed the optimal mixture 

design method of self-compacting concrete by using sequential quadratic 

programming. E.M.Golafshania and A.Behnood[8] used biogeography-based 

programming estimating the optimal mix design of silica fume concrete. 

Z.N.Amin[9] proposed a dynamic cost optimization method for concrete mix design. 

The feasibility of intelligent optimization of concrete mix proportion is verified. 
 

2  Prediction model of concrete performance 
 

An accurate prediction model of concrete performance is necessary to optimize the 

concrete mix proportion. Most prediction models are based on the regression 

analysis of experimental data. In the past 20 years, the author has collected 7002 

sets of the concrete mixture records from numerous construction projects in 

different regions and compared various prediction methods, including linear 

regression analysis, nonlinear stepwise regression analysis, and ANN model. The 

SVM method is determined to have the highest accuracy and efficiency 

(S.M.Gupta[10], B.Chen[11]). The following subsection is a brief introduction to 

this method. 
 

2.1 Statistical Learning Theory (SLT) and Support Vector Regression (SVR) 
 

For a regression problem, the data can be divided into two parts, namely, training 

and verification sets. For the training sample set, 
 

𝐷 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), ⋯ , (𝑥𝑛, 𝑦𝑛)}, 𝑦𝑖 ∈ 𝑅   

The mathematical essence of its fitting (modelling) is to select an appropriate 

function f(𝑥)  from the function set, thereby minimizing the value of the risk 

function, that is, 

                                    R[𝑓] = ∫(𝑦 − 𝑓(𝑥))
2

𝑃(𝑥, 𝑦)d𝑥d𝑦                                     (1) 

However, the probability distribution function P(𝑥, 𝑦)  is unknown; thus, R(𝑓) 

cannot be directly calculated. Traditional statistical mathematics assumes that the 

abovementioned risk function can be replaced with empirical risk function 𝑅𝑒𝑚𝑝[𝑓], 

that is, 

                                    𝑅𝑒𝑚𝑝[𝑓] =
1

𝑛
∑ (𝑦 − 𝑓(𝑥𝑖))

2𝑛
𝑖=1                                            (2) 

According to the law of large numbers, Formula (2) can only be established when 

the sample number n tends to be infinite, and the set of functions is sufficiently 

small. The minimum fitting error in terms of least squares is considered the optimum 

criterion of modeling. Therefore, the prediction capability of the algorithm with 

fitting capability is not strong but weak due to overfitting, as depicted in Figure 1. 

This algorithm is a fitting/prediction process using ANN, with an error-tracking 

strategy. 

To solve this problem, SLT replaces 𝑅𝑒𝑚𝑝[𝑓] with 𝑅ℎ[𝑓], (called “structural risk 

function”), and 𝑅ℎ[𝑓] can be minimized using the following functions: 

                              min
𝑆ℎ

{𝑅𝑒𝑚𝑝[𝑓] + √
ℎ[ln(2𝑛 ℎ⁄ )+1]−ln(𝛿 4⁄ )

𝑛
}                                    (3) 



 

4 

 

where n  is the number of training samples; 𝑆ℎ  is the VC dimension space 

structure; and h is the dimension of the VC space, which is the measurement of the 

complexity of function set or learning capability. 1 − δ  is a parameter to 

characterize calculation reliability. 
 

 
Figure 1: Overfitting of concrete performance 

 

SLT requires the pursuit of fitting accuracy on the premise of controlling the 

upper bound of fitting capability marked by the VC dimension (to limit overfitting). 

Three methods are used to control the VC dimension, as presented as follows: 
 

(1) Enlarging the interval between two types of sample points in a feature space. 

(2) Reducing the distribution range of the two types of sample points in the 

feature space. 

(3) Reducing the dimensions of the feature space.  
 

The third method is the only means of control overfitting, but the new theory 

emphasizes that the first two methods can ensure that the operation of a high-

dimensional feature space still has low VC dimension, thus ensuring that the 

overfitting is restricted. 
 

SVM is an implementation method of the abovementioned SLT. The basic idea is 

to map the sample space to a high-dimensional feature space by a nonlinear mapping. 

The algorithm for finding the optimal linear regression hyperplane is reduced to 

solve a convex programming problem with convex constraints, and the global 

optimal solution can be obtained. Simultaneously, the SVM model transforms the 

inner product operation in a high-dimensional space into the kernel function 

operation in the original space by defining the kernel function. Let the sample set be 
 

𝐷 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), ⋯ , (𝑥𝑛, 𝑦𝑛)}, 𝑦𝑖 ∈ 𝑅 
 

The regression function is expressed as the following linear equation: 
 

                                         y(𝑥) = (𝑤. ∅(𝑥)) + 𝑏                                                     (4) 
 

where w  is the weight vector, b  is the bias term, and ∅(x)  is the nonlinear 

mapping from the input space to the output space. All training samples are fitted 

with linear functions without error under the accuracy of ε . Considering the 

existence of allowable fitting errors, two non-negative relaxation variables ξ𝑖 and ξ𝑖
∗ 

are introduced, and the constraints are presented as follows: 
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{
𝑦𝑖 − 𝑤∅(𝑥𝑖) − 𝑏 ≤ 𝜀 + 𝜉𝑖

∅(𝑥𝑖)𝑤 + 𝑏 − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖
∗

𝑖 = 1,2, ⋯ , 𝑛

 

 

The Lagrange multiplier method is used to solve the abovementioned 

programming problems. The optimal regression function is obtained by finding the 

minimum extremum of the following functions. 
 

∅(𝑤, 𝜉𝑖
∗, 𝜉𝑖) =

1

2
||𝑤||

2
+ 𝐶(∑ 𝜉𝑖

𝑙
𝑖=1 + ∑ 𝜉𝑖

∗𝑙
𝑖=1 ), 

 

where C  is the set point for the penalty factor, which controls the degree of 

penalty for samples exceeding error ε. 
 

Using duality theory, the abovementioned optimization problem can be 

transformed into 
 

max {−
1

2
∑ ∑(𝛼𝑖 − 𝛼𝑖

∗)(𝛼𝑗 − 𝛼𝑖
∗)𝐾(𝑥𝑖, 𝑥𝑗)

𝑛

𝑗=1

𝑛

𝑖=1

−𝜀 ∑(𝛼𝑖 − 𝛼𝑖
∗) + ∑ 𝑦𝑖(𝛼𝑖 − 𝛼𝑖

∗)

𝑛

𝑖=1

𝑛

𝑖=1

} 

 

s. t. ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝑛

𝑖=1 = 0        (𝛼𝑖, 𝛼𝑖
∗ ∈ [0, 𝑐])                                                  (5) 

 

where K(xi, xj) = ∅(xi)∅(xj) is the kernel function. The undetermined Lagrange 

coefficients, αi and αi
∗, can be obtained by solving Formula (5) with SMO algorithm, 

and the regression function 𝑓(𝑥) is 
 

𝑓(𝑥) = ∑(𝛼𝑖 − 𝛼𝑖
∗)

𝑛

𝑖=1

𝐾(𝑥𝑖, 𝑥) + 𝑏 

 

In the SVR application, selecting a kernel function significantly influences the 

regression results. Four types of kernels, which are related to the existing algorithms, 

are commonly used. 
 

(1) Linear kernel function, that is, 𝐾(𝑥1, 𝑥2) = (𝑥1, 𝑥2). 
 

(2) Polynomial kernel function, that is, 𝐾(𝑥, 𝑥𝑖) = [(𝑥𝑇𝑥𝑖) + 1]𝑞. 
 

(3) Radial basis kernel function (RBF), that is, 𝐾(𝑥, 𝑥𝑖) = exp {−
‖𝑥−𝑥𝑖‖2

𝜎2
}. 

 

(4) Sigmoid kernel function, such as 𝐾(𝑥, 𝑥𝑖) = tanh(𝑣(𝑥𝑇𝑥𝑖) + 𝑐). 
 

For different applications, appropriate kernels must be selected. However, for 

most problems, the RBF kernels have improved fitting and prediction results and 

relatively high computing speed. When SVM is used in classification and regression 

modeling, selecting penalty factor C and parameters of kernel function become the 

key, which can typically be selected through a certain scope of cross validation. 
 

Further questions on SVM were discussed by N.V.Vladimi [12]. 
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(2) The prediction accuracy is higher in of strength than in slump, and the 

prediction accuracy of 28-day compressive strength is the highest. The average 

relative error of 28-day strength is less than 8%, which can fully satisfy the accuracy 

requirement of the mix design. 

The prediction error of slump is relatively high, which can be adjusted by 

changing the variety and dosage of additives. 
 

 
Figure 3: Fitting results of concrete 7-day Str. 

 

 
Figure 4: Fitting results of concrete 28-day Str. 

 

 
Figure 5: Fitting results of concrete initial slump 

 

 
Figure 6: Predicting results of concrete 7-day Str. 
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Figure 7: Predicting results of concrete 28-day Str. 

 

 
Figure 8: Predicting results of concrete initial slump 

 

Concrete 

performance 

Linear regression BP ANN SVM 

Fitting Predicting Fitting Predicting Fitting Predicting 

7-day Str. 11.65 11.01 10.1 10.06 10.71 10.42 

28-day Str. 7.91 7.81 7.49 7.61 7.62 7.43 

Initial slump 19.86 20.34 18.22 17.95 17 17.14 

(The verified influencing factors of concrete strength are 3-day and 28-day strengths of 

cement, maximum particle size and crushing index of gravel, water requirement ratio of fly 

ash, 28-day activity index of slag, and air content of concrete. The verified influencing 

factors of an initial slump are sand fineness modulus, maximum particle size of gravel, 

water requirement ratio of fly ash, 7-day activity index of slag, and air content of concrete.) 
 

Table 1: Contrast of fitting and predicting mean relative errors using linear egression, 

ANN and SVM(%) 
 

3  Optimizing model of concrete mix proportion 
 

Several methods, such as Monte Carlo techniques and Genetic algorithm (GA), can 

be used for nonlinear optimization of the concrete mixture. In recent years, some 

new AI methods have been proposed, such as the Particle Swarm Optimization  

(PSO, recommended by J.Kennedy and R.Eberhar[13]) and the Artificial Bee 

Colony algorithm(ABC, recommended by D.Karaboga[14]) ,which may have 

stronger global search capability and higher parameter stability. The following is a 

brief introduction of PSO. 
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3.1 Particle swarm optimization (PSO) 
 

PSO simulates the behavior of bird flocking. The following scenario is assumed: a 

group of birds is randomly searching for food in an area. Only one piece of food in 

the area is being searched. All the birds do not know the location of the food. 

However, these birds know the distance of the food in each iteration. Therefore, the 

optimal strategy for locating the food must be determined. The effective strategy is 

to follow the bird that is nearest to the food.  
 

PSO learns from the scenario and uses it to solve the optimization problems. In 

PSO, every single solution is a “bird” in the search space, called “particle.” All of 

the particles have fitness values, which are evaluated by the fitness function to be 

optimized and have velocities that direct the flying of the particles. The particles fly 

through the problem space by following the current optimum particles.  
 

PSO is initialized with a group of random particles (solutions) and then searches 

for optima by updating generations. However, in contrast to GA, PSO has no 

evolution operators, such as crossover and mutation. In every iteration, each particle 

is updated by following two “best” values. The first one is the best solution (fitness) 

it has achieved thus far (The fitness value is also stored). This value is called pbest. 

Another “best” value that is tracked by the particle swarm optimizer is the best 

value, obtained so far by any particle in the population. This best value is a global 

best and called gbest. When a particle takes part in the population as its topological 

neighbors, the best value is a local best and is called lbest. 

After finding the two best values, the particle updates its velocity and positions 

with the following equations: 
 

v[ ] = 𝑤𝑣[ ] + 𝑐1rand1( )(𝑝𝑏𝑒𝑠𝑡[ ] − 𝑝𝑟𝑒𝑠𝑒𝑛𝑡[ ]) 𝑐2rand2( )(𝑔𝑏𝑒𝑠𝑡[ ] − 𝑝𝑟𝑒𝑠𝑒𝑛𝑡[ ]) 

                                                                                                                               (6a) 

𝑝𝑟𝑒𝑠𝑒𝑛𝑡[ ] = 𝑝𝑟𝑒𝑠𝑒𝑛𝑡[ ] + 𝑣[ ]                                            (6b) 

where w is the inertia weight, v[ ] is the particle velocity, and 𝑝𝑟𝑒𝑠𝑒𝑛𝑡[ ] is the 

current particle (solution). 𝑝𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡 are defined as stated before. rand( ) is a 

random number between (0,1). 𝑐1  and  𝑐2  are learning factors (also called 

acceleration constant), typically 𝑐1 =  𝑐2 = 2. 
 

When we examine Formula (1), we find that its right side is composed of three 

parts. The first part is inertia or momentum, which reflects the movement habits of 

particles and represents the tendency of particles to maintain their previous 

velocities. The second part is cognition, which reflects the memory or remembrance 

of particles’ own historical experience and represents the tendency of particles to 

approach their best position in history. The third part is social, which reflects the 

group historical experience of cooperation and knowledge sharing among particles 

and represents the trend of particles approaching the optimal historical position of 

groups or neighbourhoods. 
 

3.2 Optimization model of concrete mix proportion based on PSO 

The PSO-based optimization process of concrete mix proportion is presented as 

follows: 
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Step4: For each particle, compare its fitness value 𝐹𝑖𝑡[𝑖] with the global optimal 

value 𝑔𝑏𝑒𝑠𝑡(𝑖). If 𝐹𝑖𝑡[𝑖] > 𝑔𝑏𝑒𝑠𝑡(𝑖), then replace 𝑔𝑏𝑒𝑠𝑡(𝑖) with 𝐹𝑖𝑡[𝑖]. 
Step5: Update the velocity V_i and position X_i of particles in accordance with 

Formulas 6-a and 6-b. 

Step6: If the end condition is satisfied (the error is adequately small or the 

maximum number of cycles is reached), then end the process; otherwise, return to 

Step2.  

The flowchart of the PSO-based concrete mix optimization algorithm is illustrated 

in Figure 9. 
 

4. Experimental verification 
 

The test objective is to verify whether the strength and slump of the optimized mix 

proportion meet the design requirements. 
 

A precast member factory designed a series of concrete mix proportion, the 

design strength grades are C25, C30, C35, and C40. The 7-day strength of concrete 

shall not be less than 75% of the 28-day design strength, and the initial slump of 

concrete shall be greater than 170 mm. 
 

The raw materials used in this experiment are as follows: 

Cement: ordinary Portland cement, 3-day flexural and compressive strength are 

5.2MPa and 23.5MPa respectively; 28- day flexural and compressive strength are 

8.1mpa and 49.3MPa, 315 yuan/ton. Fine aggregate: natural sand with fineness 

modulus of 3.39, 70 yuan/ton. Coarse aggregate: 5-40mm continuous graded 

crushed stone with crushing value of 7.5, 58 yuan/ton. Fly ash: water demand rate is 

103%, 110 yuan/ton. Mineral powder: 7 days activity index is 84.2%; 28 days 

activity index is 98.5%, 270 yuan/ton. Water reducing agent: water reducing rate is 

17.8%, solid content is 30.7%, 4850 yuan/ton. In this test, a total of 24 concrete 

strength test blocks of C25, C30, C35, and C40 were produced, which were used in 

the experiment. 
 

The optimization results are shown in Table 2 and Table 3. 

The concrete test blocks of each strength grade have be made according to the 

mix proportion in Table 4. The manufacturing process of the test block is shown in 

Figure 10 and Figure 11. 
 

  
Figure 10: Concrete test block 

  
Figure11: Concrete compression test 
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fcu 

Material consumption (kg) Concrete performance Price 

(CNY

) 
Cem-

ent 

Wat-

er 
Dand 

Grav

-el 

Fly 

ash 
Slag 

Water 

reducer 
Slump 

7-day 

intensity 

28-day 

intensity 

C25 256 186 712 1075 118 20 3.9 190 24.9 37.1 222.0 

C30 276 186 683 1072 128 21 4.3 195 28.7 41.5 229.3 

C35 316 186 664 1065 136 0 4.5 195 32.4 45.1 236.5 

C40 338 186 664 1065 74 44 4.6 190 37.4 49.9 248.8 

Table 2: Optimal concrete mix proportion using linear optimization algorithmcolony 

algorithm 
 

fcu 

Material consumption (kg) Concrete performance 
Price 

(CNY) Cem

-ent 

Wat-

er 
Sand 

Crav

el 

Fly 

ash 
Slag 

Water 

reducer 
Slump 

7-day 

intensity 

28-day 

intensity 

C25 207 183 796 992 113 56 3.8 220 24.9 36.4 216.8 

C30 241 174 732 1034 123 48 4.2 220 28.6 41.3 225.8 

C35 275 182 720 1015 129 26 4.3 220 32.4 44.7 230.3 

C40 273 182 686 1043 142 59 4.7 220 37.4 50.5 240.8 

Table 3: Optimized concrete mix proportion using support vector machine and 

artificial bee 
 

The test results are shown in Table 4. It can be seen from Table 4 that there are 

errors between the concrete strength test and prediction results, and the errors are 

close to the average error range calculated in Table 1 and meet the requirements of 

concrete strength. 
 

According to the contrast of test and model prediction results, it can be find that 

most of the model fitting and prediction results of concrete mechanical properties 

are better, which can reduce the time and cost for concrete production. 
 

Table 4: The test results for optimized concrete mix proportion 

fcu 

7-day 

intensity 

/MPa 

Actual 

value 

/MPa 

relative 

error 

/% 

28-day 

intensity 

/MPa 

Actual 

value 

/MPa 

relative 

error 

/% 

design 

Slump 

/ mm 

Actual 

value 

/mm 

relative 

error 

/% 

C25 24.9 21.3 -14.4 36.4 30 -17.6 220 170 -36.3 

C30 29.3 27.5 -6.1 41.2 38.6 -6.3 220 170 -36.4 

C35 32.4 28.1 -13.3 44.7 39.5 -11.6 220 170 -40.9 

C40 37.4 35 -6.4 50.5 50.8 0.6 220 170 -40.9 
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5. Conclusions 
 

In this research, the concrete mixture optimization method based on big data and 

artificial intelligence is presented and validated. The experimental verification 

shows that this method is effective and reliable.  
 

An important advantage of the optimization method is that all the concrete design 

indexes, including different performances at various ages, such as flexural strength 

and durability, can be listed as limitations of the optimization model provided that 

the prediction accuracy is adequate. 
 

The author has also developed a concrete quality and cost control system 

(Compos), as demonstrated in Figure 12, which includes several other functions in 

addition to mix proportion optimization, such as hydration heat calculation and 

temperature field analysis. 
 

 
Figure 12: Interface of concrete quality and cost control system (Compos) 

 

The production of concrete is a relatively extensive process, and the performances 

of concrete are affected by many factors, such as raw materials’ quality, mixture, 

and production mode curing condition. Nevertheless, given that the prediction model 

is sufficiently accurate, the optimization method can be used. Therefore, the key is 

still to obtain the prediction model with sufficient accuracy. In this research, the 

average prediction error of strength is more than 7%, and the prediction error of the 

initial slump is even more than 15%. A large error indicates a significant safety 

factor that is required in the mix proportion design. Other influencing factors, such 

as mixing method, mixing time, and concrete curing condition, should be considered 

to improve the prediction accuracy of concrete performance[15]. Adequate mixture 

samples are necessary, and these samples must cover a wide range of materials’ 

dosage and qualities. The distribution of concrete properties is equally important. 

For example, concrete strength must be evenly distributed over the 10–100 MPa 

range; in particular, it must not be concentrated only on a relatively narrow band. 
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