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Abstract 
 

The aim of this work is to analyse the use of PINN to solve forward and inverse 

problems of reacting flow with multicomponent reactants. For the above two 

problems, PINN can successfully get the correct result. In the forward problem, using 

the sin function as the activation function fits the discontinuous boundary problem 

better than using tanh, and the training speed is faster. In the inverse problem, PINN 

uses data to learn model parameters can not only learn the convection term and the 

diffusion coefficients, but also learn the parameters related to the kinetics of the 

reaction and mutation efficiency, and heuristically guide us to discover the physical 

and chemical laws in the reaction flow. 
 

Keywords: physics-informed neural networks, inverse problem, reactive flow, 

advection-diffusion-reaction equation, deep learning, autocatalytic reaction. 
 

1  Introduction 
 

The reactive flow model plays an important role in the simulation of many physical 

and engineering problems, such as the transport of pollutants in water, air, and porous 

media [1]. Typically, a reactive flow model is an advection-diffusion-reaction (ADR) 

equation, which is one kind of basic partial differential equations (PDEs) with non-

linear source terms with autocatalytic reactions [2]. The so-called autocatalytic 

reaction means that through mutation, the autocatalyst will be transformed into 

another form of substance, and this new substance can also undergo an autocatalytic 

reaction at the same time, and eventually lead to competition between the new 
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substance and the original autocatalyst [3]. By accurately solving the reactive flow 

model, we not only can analyse the problems related to hydrodynamic catalytic 

reactions in chemical, physical, and electromagnetic fields but also can design 

appropriate reaction terms to optimize the process control of the entire catalytic 

reaction. 
 

A variety of numerical methods can be used to solve the ADR [4,5,6], however, 

due to the numerical discrete calculation format, none of them is thought to be really 

space-time continuous. Moreover, traditional methods are usually prohibitively 

expensive for solving inverse problems (for inferring origins in transport processes or 

discovering missing physics in reactive transport, for example). Recently, the 

spatiotemporal continuous solution of the PDEs and the solution of inverse problems 

can be provided by deep learning (DL) [7, 8, 9]. Based on the governing equation, and 

initial and boundary conditions, continuous field information is given by the trained 

DL PDE solver. Using the automatic derivation ability of Neural Network (NN), 

physics-informed neural networks (PINN) [9] not only solves the forward problem 

according to the governing equation and initial boundary conditions but also solves 

the inverse problem according to the observed data. However, as a multiscale problem, 

the ADR equation includes advection, diffusion, and reaction terms, which makes the 

equation sensitive to changes in each term. This means that a more accurate 

approximation of the derivatives in the PINN is needed.  
 

In this paper, the PINN method is applied to reacting flow problems with 

multicomponent reactants. To avoid the error fits due to discontinuous boundaries, the 

sin function instead of tanh is used as the activation function. For the inverse problem, 

it gives the missing physics information from the data.  
 

2  Methods 
 

PINN is constructed by the NN structure and a physics-informed loss function, where 

the solution of the PDE is approximated by NN. In this paper, we choose fully 

connected neural networks in the original PINN to solve the ADR equation, and it is 

straightforward to change the network structure into other forms. The structure of the 

PINN is shown in Fig. 1. 

 
Figure 1: Structure of the PINN for solving a partial differential equation 
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 The PINN is implemented by imposing two types of losses. One is the ℓ𝑠 

controlled by the collocation points 𝑋𝑐 and the other is the ℓv calculated on the initial-

boundary points 𝑋𝑖. Consequently, the PINN classifies the training points into two 

categories. One kind is the points in the space-time domain and the other kind is the 

initial-boundary points. Different from traditional numerical models, value constraint 

is used for PINN to train NN to fit the initial and boundary conditions, which means 

that there are errors in the prediction of the initial and boundary conditions. The loss 

function can then be defined by the 𝐿2  norm as: 

ℓ(Θ;  𝑋) =  𝜔𝑠ℓ𝑠(Θ; 𝑋𝑐) + 𝜔𝑣ℓ𝑣(Θ; 𝑋𝑖𝑏)                             (1) 
where 

 ℓ𝑠(Θ; 𝑋𝑐) =  
1

|𝑋𝑐|
 ∑ ‖

𝜕𝑢Θ

𝜕𝑡
+ 𝑣

𝜕𝑢Θ

𝜕𝑥
−  𝑘

𝜕2𝑢Θ

𝜕𝑥2
− 𝑓‖𝑋∈𝑋𝑐 2

2

          (2) 

ℓ𝑣(Θ; 𝑋𝑖𝑏) =  
1

|𝑋𝑖𝑏|
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2
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                                    (3) 

in which |𝑋𝑐| and |𝑋𝑖𝑏| represents the number of points in 𝑋𝑐 and 𝑋𝑖𝑏,  𝐵(𝑢Θ, 𝑋𝑖𝑏) is 

the boundary condition, and 𝜔𝑠 and 𝜔𝑣 are the weights.  

 

 PINN can also be used for inverse problems. With little modifications, the 

parameters of PDEs and the initial distribution can be learned. For inverse problems, 

observed data are required and the loss function should also be modified.  Unlike 

solving PDEs, inverse problems no longer require initial-boundary values, but rather 

information about the equations in the space-time domain. The information here is 

provided by the distribution of concentrations �̂�  and the spatiotemporal position  

(𝑥, 𝑡) in the observed data 𝑋𝑣. 

 

 The loss function is the same as before, but ℓ𝑣 is no longer calculated on 𝑋𝑖𝑏, but 

on 𝑋𝑣: 

ℓ𝑠(Θ; 𝑋𝑐) =  
1
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ℓ𝑣(Θ; 𝑋𝑣) =  
1

|𝑋𝑣|
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2
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                           (5) 

where 𝑣𝜃, 𝑘𝜃are the model parameters to be learned. 

 

3  Results 
 

The test problem is a widely used autocatalytic reaction model proposed by Alhumaizi 

[10], which is based on a continuous flow tubular reactor, including three reactants A, 

B, and C. The specific steps in the autocatalytic reaction process are as follows: 

Replication of B:   𝐴 + 2 𝐵 →
𝑘1

3𝐵 

Death of B:   𝐵 →
𝑘2

𝑃1 

Mutation of B into C:   𝐴 + 2 𝐵 →
𝛼𝑘1

2 𝐶 + 𝐵 

Replication of C:   𝐴 + 2 𝐶 →
𝛽𝑘1

3𝐶 
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Death of C:   𝐶 →
𝑘2 𝛽⁄

𝑃2 

where 𝑘1, 𝑘2, α, and β are a set of constants defining the kinetics of the reaction and 

mutation efficiency. If we assume dispersion to be unidirectional along the reactor 

axis, mass balance equations for species A, B, and C can be written in a dimensionless 

form as follows: 
𝜕𝑈1

𝜕𝑇
+ 𝑣

𝜕𝑈1

𝜕𝑋
= 𝐷1

𝜕2𝑈1

𝜕𝑋2 + (1 − 𝑈1)[(1 + 𝛼)𝑈2
2 + 𝛽𝑈3

2],                            (6) 

𝜕𝑈2

𝜕𝑇
+ 𝑣

𝜕𝑈2

𝜕𝑋
= 𝐷2

𝜕2𝑈2

𝜕𝑋2
+ (1 − 𝛼)(1 − 𝑈1)𝑈2

2 − 𝛾𝑈2,                                (7) 

𝜕𝑈3

𝜕𝑇
+ 𝑣

𝜕𝑈3

𝜕𝑋
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𝜕2𝑈3

𝜕𝑋2 + (1 − 𝑈1)(𝛽𝑈3
2 + 2𝛼𝑈2

2) −
𝛾

𝛽
𝑈3,                       (8) 

where  𝑈1 =
𝑢𝑓−𝑢1

𝑢𝑓
, 𝑈2 =

𝑢2

𝑢𝑓
, 𝑈3 =

𝑢3

𝑢𝑓
, 𝑋 =

𝑥

𝐿
,   𝑇 = 𝑘1𝑢𝑓

2𝑡, 𝑉 =
𝑎

𝑘1𝑢𝑓
2𝐿

, 𝛾 =
𝑘2

𝑘1𝑢𝑓
2,  

𝑢𝑓  is the feed substrate concentration, 𝑋  dimensionless reactor length, 𝑇  is the 

dimensionless time. 

Initial condition:  

𝑈1(𝑋, 0) = 1,  𝑈2(𝑋, 0) = 0,  𝑈3(𝑋, 0) = 0. 

Boundary condition: 

𝑈1(0, 𝑇) = 0,  𝑈2(0, 𝑇) = 1,  𝑈3(0, 𝑇) = 0, 

𝑈1(1, 𝑇) = 1,  𝑈2(1, 𝑇) = 0,  𝑈3(1, 𝑇) = 0. 

 

 For this problem, two questions are considered: whether PINN can simulate 

dynamic behaviors of the ADR system given initial values and boundary conditions, 

and for the inverse problem, whether PINN can learn the correct kinetics of the 

reaction and mutation efficiency. The reference solution is given by the SPH method 

[5]. Parameter settings: α=0.065, β=2.0, γ=0.025, v=1.0, 𝐷1 = 𝐷2 = 𝐷3 = 0.05. 
 

 The PINN results are compared with the reference solution is shown in Fig. 2. The 

PINN with sin as an activation function can give the correct solution. We also tested 

tanh as an activation function in Fig.3, but the result was wrong. Figure 4 presents the 

loss reduction in the training process, it is clear that PINN with sin as activation can 

be trained faster. 

 

 Table 1 presents all the model parameters learned by PINN from the reference 

solution. Table 2 presents the kinetics of the reaction and mutation efficiency learned 

by PINN from the reference solution. By comparing the two tables, all reaction 

parameters except β are correctly learned, and even the flow field and three diffusion 

parameters are learned correctly. Therefore, we consider whether the governing 

equation is β-insensitive. 

 

 Therefore, using PINN to solve the forward problem under different β conditions, 

the results are shown in Fig. 5. Prove that the problem is β-insensitive. 
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Figure 2: Comparison of the PINN results with reference solutions 
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    Figure 3: Comparison of the PINN results with sin and tanh as activation function 

 
Figure 4: Comparison of the loss reduction with sin and tanh as activation function 
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Figure 5: Comparison of the PINN results with different 𝛽 
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 model parameters 
prediction 

reference error 

𝛼 0. 06585819 0.065 1.3203 % 

𝛽 0. 8005827 2.0 59.9709% 

𝛾 0. 025006412 0.025 0.0256% 

𝑣 0. 9987521 1 0.1248% 

𝐷1 0. 04985645 0.05 0.2871% 

𝐷2 0. 04979899 0.05 0.4020% 

𝐷3 0. 052033793 0.05 4.0676% 

Table 1: The error of the model parameter predicted by the PINN 

Table 2: The error of the kinetics of the reaction and mutation efficiency predicted 
by the PINN 

 
 

4  Conclusions and Contributions 
 

In this paper, the PINN with sin as activation function is presented. The main 

conclusions are as follows: 

 

 For the forward problems, the strategy of using sin instead of tanh was 

demonstrated as an effective method for PINN to solve the ADR equation is proposed. 

By using sin as the activation function, the derivatives of the functions fitted by PINN 

are limited, and the problem of excessive derivatives caused by discontinuous 

boundaries in the case of using tanh will disappear. And in the process of training, the 

loss of the method with sin can be reduced faster than the method with tanh. The 

improvement has greatly improved the stability of the model and reduce the time cost 

by training, without increasing the need for additional data during the training process. 

 

 For the inverse problem, both strategies with three and seven parameters were 

tested. When testing three parameters related to the kinetics of the reaction and 

mutation efficiency, both α and γ were well predicted, with the exception of β, which 

proved to be insensitive to the equation. After adding the velocity parameter v for the 

convection term and the diffusion coefficients 𝐷1, 𝐷2, 𝐷3 of the three reactants, PINN 

can still correctly predict these parameters. PINN leads us to discover and verify that 

this equation is insensitive to changes in β by making predictions about β errors large. 

PINN demonstrates a strong ability to learn missing physics on inverse problems, and 

it can help us better observe and explain the laws of physics and chemistry. 
 

 model parameters 
prediction 

reference error 

𝛼 0. 06547399 0.065 0.7292% 

𝛽 0. 8991418 2.0 55.043 % 

𝛾 0. 024921743 0.025 0.313 % 
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