
Enhancing Lecture Capture with Deep
Learning

R.M. Sales1,2 and S. Giani2

1Whittle Laboratory,
Cambridge University, Cambridge, United Kingdom

2Engineering Department, Durham University,
Durham, United Kingdom

Abstract

This paper provides an insight into the development of a state-of-the-art video pro-
cessing system to address limitations within Durham University’s ‘Encore’ lecture
capture solution. The aim of the research described in this paper is to digitally re-
move the persons presenting from the view of a whiteboard to provide students with
a more effective online learning experience. This work enlists a ‘human entity de-
tection module’, which uses a remodelled version of the Fast Segmentation Neural
Network to perform efficient binary image segmentation, and a ‘background restora-
tion module’, which introduces a novel procedure to retain only background pixels in
consecutive video frames. The segmentation network is trained from the outset with
a Tversky loss function on a dataset of images extracted from various Tik-Tok dance
videos. The most effective training techniques are described in detail, and it is found
that these produce asymptotic convergence to within 5% of the final loss in only 40
training epochs. A cross-validation study then concludes that a Tversky parameter of
0.9 is optimal for balancing recall and precision in the context of this work. Finally, it
is demonstrated that the system successfully removes the human form from the view
of the whiteboard in a real lecture video. Whilst the system is believed to have the
potential for real-time usage, it is not possible to prove this owing to hardware limita-
tions. In the conclusions, wider application of this work is also suggested.

Keywords: convolutional neural network,semantic image segmentation, binary hu-
man segmentation, learning rate optimisation, lecture capture technology

1

Proceedings of the Eleventh International Conference on  
Engineering Computational Technology 
Edited by B.H.V. Topping and P. Iványi 

Civil-Comp Conferences, Volume 2, Paper 6.2 
Civil-Comp Press, Edinburgh, United Kingdom, 2022, doi: 10.4203/ccc.2.6.2 

Civil-Comp Ltd, Edinburgh, UK, 2022 
 
 



1 Introduction

In countries where internet access is almost universal, it has become common practice
for higher-education institutions to record their lectures for students to access online.
Whilst expensive software and/or hardware is often required to ensure that lecture
content is recorded clearly, research generally shows that e-learning technologies are
worthwhile and contribute positively to student learning outcomes [1]. At Durham
University, the ‘Encore’ lecture capture system is currently only capable of filming
and uploading a lecturer’s commentary and visual-projector slides; as of yet, no white-
board teaching is recorded. In certain disciplines where whiteboards remain the most
natural means of conveying knowledge and information, i.e. the STEM subjects, this
technological limitation could impact the overall quality of learning. If teaching staff
have to adopt less effective modes of delivery just to accommodate recording, then
the sensible response would be to upgrade the ‘Encore’ system to capture whiteboards
too. But why stop there? With the accelerated transition towards web-based learn-
ing, brought about in reaction to the Covid-19 pandemic [2], there has never been a
greater need for advanced e-learning technologies. These circumstances provide the
opportunity to further enhance the ‘Encore’ online lecture experience by creating a
system that provides students with a clear and unobstructed view of the whiteboard at
all times.

In response to this opportunity, the objective of this work was to develop a real-
time video processing system that could be used as part of the lecture capture process
to digitally remove the persons presenting (the foreground) from the view of a white-
board (the background). To achieve this, it was necessary to divide the task into two
more clearly defined sub-tasks: first, to develop a system that can detect the location
of human beings within a frame of video and; second, to develop a system to restore
any whiteboard content that is currently obscured. These were most easily managed
with two separate computational modules working in tandem.

Module I: Human Entity Detection

The human entity detection module was introduced to predict which regions of a
video frame are most likely to contain human beings. There are, of course, a num-
ber of traditional computer vision algorithms that could have been adopted to tackle
this simple-sounding problem without the need for human supervision [3–6]. How-
ever, many have been rendered obsolete as a result of breakthrough discoveries in
artificial intelligence in the last decade [7–11]. The most compelling state-of-the-art
techniques now include variations of object detection and image segmentation, both of
which continue to show increasingly promising results when implemented using deep
convolutional neural network (DCNN) architectures [12]. Whilst there is still consid-
erable room for improvement in terms of effectiveness and efficiency, the most recent
architectural contributions have demonstrated that real-time detection and segmenta-
tion techniques are now fit for application even on modest hardware [13]. Primarily

2



because the latter offered greater predictive exactness at only a fractionally higher
cost, the approach adopted in this work was to develop a deep-learning-based binary
semantic segmentation model.

Module II: Background Restoration

The background restoration module was introduced to digitally reconstruct the re-
gions of the whiteboard that are identified by the human entity detection module as
being obscured. In essence, this makes it possible to produce video footage where all
teaching staff appear to be removed, provided they have been completely identified
during segmentation. Instead of using complex artificial intelligence techniques that
generate synthetic imagery to replace spatio-temporal holes in video frames, as in [14]
and [15], a straightforward algorithm was developed to recover the actual background
(the whiteboard) as it was last observed. In the context of recording a presenter’s writ-
ing on a whiteboard in real-time, this approach is superior in terms of both accuracy
and computational expense: factors that are deemed far more important than temporal
coherence or aesthetics in this work.

In the remainder of this paper, Section 2 presents the theory and methods used to
develop the human entity detection and the background restoration modules; Section
3 gives a comprehensive account of the experimental procedure used in training and
testing; Section 4 presents and comments on the most relevant results, comparing
these to the state-of-the-art; while the Conclusions also suggest potential future work.

2 Theory and Methods

2.1 Human Entity Detection

The human-entity detection module (Figure 1) is essentially a remodelled version of
the state-of-the-art Fast Segmentation Neural Network (Fast-SCNN) developed by
Poudel et al. [16]. This network was chosen as a starting point for several reasons:
it is designed specifically for faster than real-time semantic image segmentation; its
capabilities extend well to high-resolution images; and with only 1.11 million pa-
rameters, it is well suited for deployment on general-purpose computer hardware. In
testing, the original Fast-SCNN has been shown to achieve an astonishing 68% mean
average precision (mAP) at 123.5 frames per second when performing segmentation
at full resolution (2048 × 1024px) on the CityScapes benchmark server [17]. Al-
though newer and potentially more advanced models have since been introduced, this
three-year-old network remains highly competitive in terms of accuracy, runtime and
computational cost. This enduring high level of performance can largely be attributed
to the very efficient arrangement of network modules and the authors’ intentional use
of low-memory components.

Fast-SCNN is a fully-convolutional neural network that embeds a deep two-branch

3



Figure 1: The human entity detection module is a remodelled version of Fast-SCNN
[16] designed specifically for real-time binary semantic image segmenta-
tion. The tensor dimensions show the remodelled network configured at 1/4
resoltion (512× 256px).

structure centrally within an encoder-decoder model. Poudel et al. group this archi-
tecture into four back-to-back modules which, from input to output, include: a novel
‘learning to downsample’ (LTD) module, a global feature extractor (GFE), a feature
fusion module (FFM), and a classifier.

2.1.1 Remodelling Fast-SCNN

The original Fast-SCNN model achieves faster than real-time performance on an
Nvidia Titan XP card with 12GB of GDDR5 memory. However, a number of mod-
ifications must be made to prepare it for real-time segmentation on general-purpose
hardware. If it were configured at full-resolution on a lesser GPU, the concern is that
Fast-SCNN would take about two days to train and would be incapable of making
real-time predictions. The solution was simply to trade detail for efficiency and re-
configure the model to accept 1/4 resolution inputs. At a reduced size of 512× 256px,
each image demands only 1/16th of its original memory footprint and thus inference
becomes quicker and training with large batches becomes accessible.

A change of size would ordinarily pose no issue for a FCN. However, Fast-SCNN
uses a spatial pyramid pooling (SPP) block with fixed bin sizes. The original authors
provide no information on how to implement this at any resolution, and so this work
elects to build a new and improved SPP block based on the 4-layer pyramid of Zhao et
al. [20]. This new block employs 2D average pooling with variable stride and dynamic
pool-size as a means to aggregate gridded subregions of the input feature tensor. Four
parallel layers with bins arranged in 12, 22, 42, and 82 grids divide context information
in both spatial dimensions; a pointwise convolutional layer then condenses the number
of channels of each bin by a factor of its spatial size. Having weighted each bin equally
in terms of parameters, the features are then upsampled with bilinear interpolation and

4



concatenated with the original SPP input.

The final change was the addition of dropout between the last two depthwise sep-
arable layers so as to prevent co-adaptation of features in the classifier. The dropout
parameter was set to a value of 0.3 during training to provide regularisation and protect
against overfitting [21]. In line with the original Fast-SCNN, the remodelled version
is very lightweight with just over 1.16 million trainable parameters.

2.2 Background Restoration

From a ‘black-box’ perspective the background restoration module sequentially ac-
cepts a stream of two inputs, xt and x∗

t , from which it generates one stream of outputs
yt. An additional internal variable also exists with the sole purpose of retaining only
the most recent output, yt−1, once it is brought into existence. The inputs include a
three-channel RGB image, received directly from the camera, and its corresponding
single-channel grayscale segmentation bitmap, as predicted by the detection module.
The restoration module computes using information from both inputs, as well as the
internal variable, and outputs a single three-channel image, for which the background
has been reconstructed, to the real world. The flow of information through this com-
putational module is shown diagrammatically in Figure 2. As this system operates
on video, i.e. constant streams of input images and bitmaps, this procedure is simply
repeated for each successive frame of footage.

Figure 2: A black-box depiction of the flow of video frame information via the two
parallel computational modules (photograph of Dr C. Balocco kindly pro-
vided by Dr S. Giani.)

The restoration algorithm works by updating each pixel of the internal variable
yt−1 to its most recently captured state in xt, provided that pixel does not fall within
the obscured region defined in x∗

t . To be clear, the internal variable is an image data
structure containing only the most recently unobstructed pixel values from the set of
input images, Xt, where it is possible. Once this internal variable has been completely
updated, it is output to the real world as yt. The result of multiple inputs is a sequence
of video still-image frames where all regions containing human entities are replaced
by the most up-to-date version of the background they are now obscuring. Conceptu-
ally, this is akin to an ‘invisibility cloak’. When initialized, the background restoration

5



module produces an output frame, y0, that is identical to the original input image, x0:
since the system begins with no prior knowledge as to the view behind any obstruc-
tions, it must output what it ‘sees’. Eventually, as the human entities move within, or
even out of the frame, the whole background is revealed and the module can output a
frame containing no obstructions at all. While the camera remains stationary, which
for most lecture-capture settings it will, this method should produce no distortion.

The fact that images are digitally expressed as tensors with real-integer entries
makes them particularly well suited for linear algebraic transformations and bitwise
boolean operations. In this work, input image pixels have standard 8-bit unsigned
integer values ranging from 0 to 255 inclusive and the binary masks contain binary
values {0,1} scaled up to 8-bits: {0,255}. Computationally, this makes the procedure
of updating pixels relatively straightforward. To begin, a bitwise NOT operator is
applied to the segmentation mask in order to generate a temporarily inverted version
where the foreground and background pixel values are switched. A bitwise AND
operator then applies this inverted mask to all three channels of the RGB input. This
produces a modified version of the input where the values of all pixels containing
persons are removed (zero) but those containing the background are unaltered. An
identical process takes place with the original mask and the previous output frame to
produce an image where only the ‘old’ pixels in the current region containing persons
are preserved. As the disjoint union of the non-zero regions of these images partition
the domain, these need only be summed in a bitwise fashion to produce the new output
frame. The following pseudocode block, developed in this project, summarises the
restoration algorithm more formally.

Algorithm 1: The background restoration procedure.
Input : An image, xt, and its predicted mask x∗

t .
Output: An image, yt, with its background restored.

for (xt, x
∗
t ) ∈ {(x0, x

∗
0), (x1, x

∗
1), . . . , (xn, x

∗
n)} do

if t = 0 then
yt ← xt

else
yt ← UpdateFrame(xt, x∗

t , yt−1)
end
return yt

end

Function UpdateFrame(xt, x∗
t , yt−1):

return ((xt AND NOT x∗
t ) ADD (yt−1 AND x∗

t ))
end

To aid understanding, the restoration procedure for a single iteration is depicted in
diagrammatic form in Figure 3.

6



Figure 3: The first cycle of the background restoration procedure: (left) the current
mask applied to the previous frame foreground, (centre) the current mask
inverse applied to the current frame background, and (right) the two com-
bined. The green and red outlines show the dancer’s position in the current
and previous frames respectively. What remains of the person after one cy-
cle is in blue. Original images from Kaggle [22].

3 Experimental Procedure

This section addresses three technical points concerning the experimental procedure:
the methods of training; details of the chosen loss function; and the dataset. Details
regarding the feasibility of transfer learning and the full details of implementation can
be found in [23].

3.1 Training

An empirical technique proposed by Smith [24] was used ahead of training to quickly
estimate reasonable lower and upper bounds for the learning rate hyperparameter. This
involved measuring batch loss metrics for several hundred training batches whilst
monotonically increasing the learning rate from small to large values. The optimal
learning rate range was then obtained by plotting loss vs. the logarithm of learning
rate and identifying the region of greatest negative slope, i.e. the steepest consistent
drop in loss. This investigation revealed that learning rates at or above 1×10−5 would
ensure reasonable training times and that rates at or below an upper bound of 2×10−1

would avoid divergence in most circumstances. It is important to note that these find-
ings will vary considerably depending on the choice of network, loss function, dataset,

7



and batch size and are by no means a guideline for other studies.

Following the recommendations of Poudel et al. [16], the Fast-SCNN based human-
entity detection module was trained using stochastic gradient descent (SGD) with a
momentum parameter of 0.9 for a total of 160 epochs. All experiments were run at
quarter-resolution with a batch size of 32. A learning rate scheduler was added and
used throughout training to implement a technique known as ‘learning rate anneal-
ing’. This involved progressively decaying the learning rate between the above-stated
upper and lower bounds according to a degree-two polynomial function. The intu-
ition behind this was to transition from large update steps that quickly but coarsely
improve the initial parameter values to smaller update steps that slowly converge to-
wards locally optimal values with much more exactness. Despite its relative simplicity
compared to adaptive or cyclical learning rate policies, in practice, annealing is found
to be one of the most reliable and effective means of obtaining faster asymptotic con-
vergence at no cost to test performance.

3.2 Loss Function

Nearly all loss functions used in binary segmentation quantify the agreement between
predicted segmentation masks and their ideally expected results, i.e. the ground truths,
by considering each pixel prediction as an independent binary classification [25]. As a
result, many contain mathematical terms that reflect the relative pixel-based frequency
of each of the four binary predictive outcomes: true positive, true negative, false pos-
itive, and false negative. In the context of this work, false negative predictions are
highly undesirable since these result in contamination of the output. Clearly, it is a
benefit to train using a loss function that allows the user to scale the importance of
each outcome individually. With this in mind, the human-entity detection module was
optimized using a parametric loss function based on the popular Tversky Index [26]:

TI =

∑
yŷ∑

yŷ +
∑

βy(1− ŷ) +
∑

(1− β)(1− y)ŷ
(1)

where y is a normalised true pixel value {0, 1}, ŷ is a normalised predicted pixel
value [0, 1], and β is an adjustable weight coefficient [0, 1]. The overall loss metric for
each iteration is simply computed by averaging the complement of the aforementioned
Tversky Index over the current training batch. A series of experiments on the valida-
tion set revealed that setting β = 0.9 leads to the desired balance between precision
and recall. Full details of hyperparameter tuning, as well as a complete summary of
the most relevant training details can be found in [23].

3.3 The dataset

The segmentation network was trained on a dataset of 2,615 finely-annotated high-
resolution images extracted from a number of anonymised Tik-Tok dance videos. The

8



raw images were sourced from a publicly available Kaggle archive [22] under a cre-
ative commons license and, in general, depict at least one entirely unobscured indi-
vidual in a complex or unique dance pose. At a glance, there appears to be a good
balance of indoor and outdoor scenes, containing both male and female individuals
in bright and dark lighting conditions. The segmentation masks also contain a good
distribution of black and white pixels with neither overpowering the other. To make
the dataset usable, each image-mask pair was standardised and then partitioned into
one of the training, testing or validation sets according to an 80:10:10 split. Standard-
isation included the resizing of each image-mask pair to fit within a multiple of the
network’s input resolution, namely 1024×512px, followed by some horizontal or ver-
tical translation. To prevent distortion, a common scaling factor was applied in both
directions and zero-padding was used to bulk out the surplus area. To discourage the
SPP layer from favouring central pixel sub-regions, random samples from a uniform
distribution were used to determine the extent of each translation. Both interventions
aim to maximise the model’s predictive ability over a wider range of use cases.

It is important to note that each image is a sample extracted from a relatively small
set of videos. Clearly, this will mean that multiple images share broadly the same
lighting, scenery, background, and camera perspective. To combat this homogeneity
and thus avoid overfitting during training, extensive data augmentation techniques
were employed [27]. A mix of geometric transformations (translations, rotations,
zooms, shears, horizontal flips) and colour augmentations (brightness scaling) were
used to artificially increase the size and overall quality of the training dataset. For
ease of reference, the exact augmentation details are summarised in Table 1.

Augmentation Details / sample bounds
Rotation ±5 degrees in either direction
Zoom 40% enlarged→ 100% unchanged
Height shift ±20 percent image height
Shear ±20 percent in any direction
Brightness 40% as bright→ 50% brighter
Horizontal flip randomly applied

Table 1: Reference Tik-Tok dataset augmentation details.

4 Results and Discussion

4.1 Training Analysis

Training at one-quarter resolution on a Google Colab cloud-based virtual machine
took between five and six hours, with each epoch demanding approximately two min-

9



utes of computation. Multiple training sessions were needed to fine-tune the hyperpa-
rameter values. Figure 4 presents the training and testing curves for the loss, recall and
precision metrics corresponding to the best performing training session (see 4.2). In
this case, the hyperparameters and dataset augmentations were set according to [23]
and Table 1 respectively, and the Tversky loss parameter was 0.9 throughout.

Figure 4: Training and testing curves of loss (left), recall (center) and precision (right)
for the best performing training run.

The training metrics consistently followed characteristic learning trajectories as the
model became increasingly exposed to the segmentation task. By the end of the first
training epoch, the Tversky loss had already improved from a value of 1 to a value of
approximately 0.47. In the same timeframe, the recall and precision metrics increased
from 0 to about 0.90 and 0.21 respectively. Within 40 epochs, each metric had settled
to within 5% of its final value. This unusually fast convergence is largely attributed to
the efforts made in finding optimal upper and lower bounds for the learning rate hyper-
parameter, as well as the adoption of an effective polynomial learning rate annealing
strategy. Apart from the anomalous spikes in loss at epochs 40 and 59, the training
curve shows no sign of divergence; and instead converges asymptotically until train-
ing ends. This asymptotic nature indicates that the model was incapable of further
learning and confirms that 160 epochs were sufficient to avoid underfitting. The key
points of note are the usefulness of Smith’s method [24] in determining an optimal
range of learning rates, and the importance of a learning rate scheduler.

None of the test metrics showed any sign of improvement for the first four training
epochs, but all increased to surpass their training counterparts by the end of epoch 9.
This early ‘lag’ was observed at the start of all sessions and would typically worsen at
decreased initial learning rates. In the absence of any similar results in the literature,
it is hypothesised that this phenomenon is connected to the high data variance and rel-
atively low number of images in the test dataset. From epoch 9 onwards, both test loss
and recall remained high relative to training, whereas test precision fell and remained
below training precision. Generally, the test curves follow the same trajectory as the
training curves but with a small and broadly constant generalisation gap. For both loss
and recall, this gap should not be mistaken with overfitting. Data augmentations were
intentionally applied only to the training dataset to allow for fair comparison between
augmentation settings. As a corollary, the model performed well on test images with

10



better per-epoch loss on the testing dataset. If the model were overfitting on these two
metrics, this gap would be positive, i.e. the test loss and recall would be worse than
the training loss and recall, but this was not the case. There is, however, evidence to
suggest that the model overfits in terms of precision, as can be seen by the positive
generalisation gap in the lower subfigure of Figure 4. Considering that the Tversky
loss function parameter (β) was set to a value of 0.9 for this particular training session,
i.e. the objective was to favour recall over precision, this seems perfectly reasonable.
These results demonstrate that the segmentation model trades generalisation in terms
of precision for generalisation in terms of recall, thus highlighting the importance of
the loss function in conveying the training objective.

4.2 Accuracy Analysis

The sole purpose of hyperparameter fine-tuning is to find the hyperparameter val-
ues that yield the most optimal system, either directly through training or indirectly
through transfer learning. In this work, the main aim was to identify a value for the
Tversky loss parameter that would result in a model best suited to the requirements
of the human entity detection module. Of primary interest was the balance point be-
tween recall and precision. Figure 5 shows the validation metrics for a family of nine
training experiments in which the Tversky loss parameter was iterated through the set
{0.1, 0.2, 0.3, . . . , 0.9}. In each of these experiments, the human entity detection
module was trained from the outset for the entire 160 epoch duration, with all other
hyperparameters fixed. Each of the segmentation models were then evaluated on the
same validation dataset with no data augmentations.

Figure 5: A cross-validation study on the effect of varying the Tversky loss function
parameter (β) between 0.1 and 0.9.

The validation results exemplify the nature of the recall-precision tradeoff and
clearly demonstrate that it would not be possible to train the segmentation model to
maximise both metrics simultaneously. Since the recall curve exhibits monotonic in-
creasing behaviour and the precision curve exhibits monotonic decreasing behaviour,
both as functions of the Tversky loss parameter, there is no increment in which these
improve together. The recall and precision metrics intersect at β ≈ 0.4, i.e. slightly
to the left of centre on the x-axis, which indicates that either the model or the dataset
is predisposed to generate more false positives than false negatives. As anticipated,

11



training with lower values of β leads to models with higher precision than recall, while
training with higher values of β leads to models with higher recall than precision. The
maximum values of recall and precision were found to be 0.971 and 0.920 respec-
tively. Although not included in Figure 5, values at either of the extremes were found
to encourage fully-saturated outputs: for β = 0, the model learned to predict all pixels
as false, while for β = 1, the model learned to predict all pixels as true. These findings
embody the issue of saturation raised in [28] since extreme parameter values lead to
loss functions that depend on precision or recall, but not both.

The Dice Similarity Coefficient (DSC) and Tversky Index (TI) amalgamate recall
and precision to allow for model comparison using a single representative value. The
difference between the metrics is that unlike the DSC, the TI weights false positive
and false negative outcomes relative to the Tversky loss parameter. Even with these
metrics, it is not clear which value of the loss parameter is best. The DSC achieved
a maximum value of 0.861 when β = 0.4, and decreased continuously towards each
extreme, thus forming a peak-shaped profile. This decrease is noticeably steeper for
higher values of β as precision is lost increasingly on that side of the domain: a min-
imum DSC of 0.728 was achieved when β = 0.9. In contrast, the TI achieved a
minimum value of 0.857 when β = 0.3, and increased to higher values in both di-
rections, thus forming a valley-shaped profile. This increase is noticeably steeper for
higher values of β as the recall is highest on that side of the domain and precision con-
tributes very little to the TI: a maximum value of 0.912 was achieved when β = 0.9.
Since the TI and DSC separate increasingly with higher recall, and given that higher
recall is beneficial in this work, the DSC proves to be unhelpful.

Figure 6: Binary segmentation masks for various settings of the Tversky loss parame-
ter (β). Original image from Kaggle [22].

By choosing to ignore the DSC entirely, a Tversky loss parameter of 0.9 is arguably
most appropriate for the human entity detection module. Figure 6 presents segmenta-
tion masks for five trained models to allow for visual comparison and to justify trusting
the TI but not the DSC. The models are observed to predict human pixels more ‘con-
fidently’ as β is increased. Given that only the segmentation mask corresponding to
β = 0.9 fully encapsulates the ground truth, it is concluded that 0.9 is the best choice
of Tversky loss parameter.

12



5 Conclusions

In the introduction to this paper, the separate roles of the “human entity detection” and
“background restoration” modules were defined. In Section 2, the Fast Segmentation
Neural Network [16] was then described. This model was adapted to make its ap-
plication to real-time image segmentation more computationally efficient. Following
this, Section 3 provides an account of the most effective training techniques as well as
any relevant implementation details. Lastly, Section 4 presents and critically assesses
the key experimental results. Overall, the research project described in this paper has
demonstrated the following:

• A system capable of removing presenters entirely from the view of a whiteboard
in lecture videos. This system is demonstrated in almost (one-third) real-time.

• The importance of selecting a loss function that can be calibrated to a specific
learning objective. In this work, the Tversky loss parameter (β) was successfully
used to fine-tune recall and precision for the desired effect.

• The benefits of Smith’s method [24] in locating the optimal learning rates prior
to training, then applying these via a learning rate scheduler. Convergence to
within 5% was observed in 40 epochs as a result of these efforts.

• A novel procedure, using an algorithm expressed in pseudocode form (Algo-
rithm 1), that combines and updates video frame pixels according to binary
masks predicted by an artificial intelligence segmentation model.

Future work should consider quantisation of the model to reduce the GPU load to
an acceptable level. Further testing would then be required before introducing the
system to Durham University’s ‘Encore’ system. In other fields, this work may offer
development opportunities in relation to wider education/presentation systems, as well
as any system where unwanted elements need to be removed from video images.

References
[1] B. Robertson and M. J. Flowers, “Determining the impact of lecture videos on

student outcomes,” Learning and Teaching, vol. 13, no. 2, pp. 25–40, Jun. 2020.
[2] J. Louis-Jean and K. Cenat, “Beyond the Face-to-Face Learning: A Contextual

Analysis,” Pedagogical Research, vol. 5, no. 4, p. em0077, Aug. 2020.
[3] R. Nock and F. Nielsen, “Statistical Region Merging,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 26, no. 11, pp. 1452–1458, Nov.
2004.

[4] W. Tao, H. Jin, and Y. Zhang, “Color Image Segmentation Based on Mean Shift
and Normalized Cuts,” IEEE Transactions on Systems, Man and Cybernetics,
Part B (Cybernetics), vol. 37, no. 5, pp. 1382–1389, Oct. 2007.

13



[5] N. Plath, M. Toussaint, and S. Nakajima, “Multi-Class Image Segmentation Us-
ing Conditional Random Fields and Global Classification,” in Proceedings of
the 26th Annual International Conference on Machine Learning. ACM Press,
2009, pp. 817–824.

[6] C. Zhao, “Image Segmentation Based on Fast Normalized Cut,” The Open Cy-
bernetics & Systemics Journal, vol. 9, pp. 28–31, Feb. 2015.

[7] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for
Large-Scale Image Recognition,” in 3rd International Conference on Learning
Representations, Conference Track Proceedings, Y. Bengio and Y. LeCun, Eds.,
2015. [Online]. Available: http://arxiv.org/abs/1409.1556

[8] H. Noh, S. Hong, and B. Han, “Learning Deconvolution Network for Seman-
tic Segmentation,” in 2015 IEEE International Conference on Computer Vision.
IEEE Computer Society, 2015, pp. 1520–1528.

[9] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for
Biomedical Image Segmentation,” in 18th International Conference of Medical
Image Computing and Computer-Assisted Intervention. Springer, 2015, pp.
234–241. [Online]. Available: https://doi.org/10.1007/978-3-319-24574-4 28

[10] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello, “ENet: A Deep Neural
Network Architecture for Real-Time Semantic Segmentation,” CoRR, vol.
abs/1606.02147, 2016. [Online]. Available: http://arxiv.org/abs/1606.02147

[11] S. Minaee, Y. Boykov, F. Porikli, A. Plaza, N. Kehtarnavaz, and D. Terzopoulos,
“Image Segmentation Using Deep Learning: A Survey,” CoRR, vol.
abs/2001.05566, 2020. [Online]. Available: https://arxiv.org/abs/2001.05566

[12] L. Liu, W. Ouyang, X. Wang, P. W. Fieguth, J. Chen, X. Liu, and M. Pietikäinen,
“Deep Learning for Generic Object Detection: A Survey,” International Journal
of Computer Vision, vol. 128, no. 2, pp. 261–318, Oct. 2020.

[13] G. Takos, “A Survey on Deep Learning Methods for Semantic Image
Segmentation in Real-Time,” CoRR, vol. abs/2009.12942, 2020. [Online].
Available: https://arxiv.org/abs/2009.12942

[14] A. Newson, A. Almansa, M. Fradet, Y. Gousseau, and P. Pérez, “Towards Fast,
Generic Video Inpainting,” in Proceedings of the 10th European Conference on
Visual Media Production. ACM Press, 2013, pp. 1–8.

[15] D. Kim, S. Woo, J.-Y. Lee, and I. S. Kweon, “Deep Video Inpainting,” in 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE,
Jun. 2019, pp. 5785–5794.

[16] R. P. K. Poudel, S. Liwicki, and R. Cipolla, “Fast-SCNN: Fast Seman-
tic Segmentation Network,” in 30th British Machine Vision Conference.
BMVA Press, 2019, p. 289. [Online]. Available: https://bmvc2019.org/wp-
content/uploads/papers/0959-paper.pdf

[17] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson,
U. Franke, S. Roth, and B. Schiele, “The Cityscapes Dataset for Semantic Ur-
ban Scene Understanding,” in 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). IEEE Computer Society, Jun. 2016, p. 3213.

14



[18] C. Yu, J. Wang, C. Peng, C. Gao, G. Yu, and N. Sang, “BiSeNet:
Bilateral Segmentation Network for Real-Time Semantic Segmentation,” in
15th European Conference of Computer Vision, Proceedings, Part XIII, ser.
Lecture Notes in Computer Science, V. Ferrari, M. Hebert, C. Sminchisescu,
and Y. Weiss, Eds., vol. 11217. Springer, 2018, pp. 334–349. [Online].
Available: https://doi.org/10.1007/978-3-030-01261-8 20

[19] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and L. Chen, “MobileNetV2:
Inverted Residuals and Linear Bottlenecks,” in 2018 IEEE Conference on Com-
puter Vision and Pattern Recognition. IEEE Computer Society, Jun. 2018, pp.
4510–4520.

[20] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid Scene Parsing Network,”
in 2017 IEEE Conference on Computer Vision and Pattern Recognition. IEEE
Computer Society, Jul. 2017, pp. 6230–6239.

[21] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A Simple Way to Prevent Neural Networks from Overfitting,”
Journal of Machine Learning Research, vol. 15, no. 56, pp. 1929–1958, 2014.
[Online]. Available: http://jmlr.org/papers/v15/srivastava14a.html

[22] Segmentation Full Body TikTok Dancing Dataset. [Online].
Available: https://www.kaggle.com/tapakah68/segmentation-full-body-tiktok-
dancing-dataset.

[23] R. M. Sales and S. Giani, “Enhancing Lecture Capture With Deep Learning,” in
Advances in Engineering Software. Elsevier, Aug. 2022.

[24] L. N. Smith, “Cyclical Learning Rates for Training Neural Networks,” in 2017
IEEE Winter Conference on Applications of Computer Vision. IEEE, Mar. 2017,
p. 464.

[25] S. Jadon, “A survey of loss functions for semantic segmentation,” in 2020 IEEE
Conference on Computational Intelligence in Bioinformatics and Computational
Biology. IEEE, Oct. 2020, pp. 1–7.

[26] M. Yeung, E. Sala, C.-B. Schönlieb, and L. Rundo, “A Mixed
Focal Loss Function for Handling Class Imbalanced Medical Im-
age Segmentation,” arXiv e-prints, Feb. 2021. [Online]. Available:
https://ui.adsabs.harvard.edu/abs/2021arXiv210204525Y

[27] C. Shorten and T. M. Khoshgoftaar, “A survey on Image Data Augmentation for
Deep Learning,” Journal of Big Data, vol. 6, no. 1, p. 60, Jul. 2019.

[28] S. R. Hashemi, S. S. M. Salehi, D. Erdogmus, S. P. Prabhu, S. K. Warfield,
and A. Gholipour, “Asymmetric Loss Functions and Deep Densely-Connected
Networks for Highly-Imbalanced Medical Image Segmentation: Application to
Multiple Sclerosis Lesion Detection,” IEEE Access, vol. 7, pp. 1721–1735, 2019.

15


