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Abstract 
 

In this paper, we present a method for surrogate model of transcranial focused 

ultrasound (tFUS) propagation problem using deep learning technique. The trained 

neural network outputs an acoustic source position of transducer placement. The 

training datasets are generated by forward tFUS simulation using finite-difference 

time-domain method. The performance of the proposed method was evaluated 

through three examples of ex vivo human calvaria. The results show that the deep 

learning based model can provide an accurate acoustic field solution in real-time. 

Through this study, we proved the effectiveness of the deep-learning based surrogate 

model of tFUS propagation problem and its applicability in practical clinics. 
 

Keywords: deep neural network, surrogate model, wave propagation, transcranial 

focused ultrasound, finite-difference time-domain, real-time. 
 

1  Introduction 
 

Focused ultrasound (FUS), which concentrates acoustic energy to highly localized 

area of a few millimeters in biological tissue, has been gaining momentum as a non-

invasive therapeutic device [1-2]. It has attracted attention from scientific and medical 

community, with potentials for treating neurological diseases such as epilepsy [3], 

brain tumors [4], Alzheimer's [5], and Parkinson's disease [6].  
 

 Computational simulation has been widely applied to estimate location of focus, 

intracranial pressure field, induced temperature distribution, and unexpected 

reverberation effects in steps of treatment planning and retrospective analysis [7-10]. 
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However, the simulation is computationally expensive, often requiring computational 

time that is impractical for the use in clinical setting [11, 12]. 
 

 Deep learning, a class of machine learning algorithms in artificial intelligence, is 

an emerging technology has been applied in various research fields [13-16]. In the 

computational mechanics area, various efforts has been made to prove that data-driven 

computation has the leverage to improve the conventional physics/mechanics-based 

numerical procedure [17-19]. 
 

 Motivated from the previous studies fusing computational mechanics and machine 

learning technique, we developed deep learning-based surrogate model of transcranial 

FUS propagation problem. We construct a neural network to generate the FUS focus 

on the target regions for the position and orientation of the transducer given as input 

data. 

 

2  Methods 
 

The training dataset consisting of the transducer placement and the corresponding 

acoustic pressure map were generated using the forward transcranial FUS simulation. 

To reduce amount of training data, the transducer maneuvering space was defined as 

a restricted field of 20 × 20 × 20 mm3. In the maneuvering space, the forward 

simulations were performed by translating the position with 5 mm interval (i.e., at -

10, -5, 0, 5, 10 mm location from the center) along x, y, and z directions as well as 

adjusting the orientation to -5°, 0°, and 5° along the binormal and tangential directions, 

respectively. The resultant pressure distribution for the respective placement of the 

Figure 1. Sample accuracy evaluation result for the focal volume(projected to yz-, yx-, 

xz-planes) using GAN network. From top to bottom, the three rows represent the 

ground truth, generated field from the network, and focal volume error map that show 

the intersection (white region) and union (red region). 
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transducer was acquired in the region of interest (ROI) ranged 50 × 50 × 50 mm3 (i.e., 

101 × 101 × 101 voxels with 0.5 mm resolution).  
 

 The input of the constructed neural networks is the position and orientation of the 

transducer while the output is the pressure field binarized and approximated in the 

ROI. We demonstrated three different network architectures constructed by using (1) 

autoencoder(AE) (2) generative adversarial networks(GAN) (3) variational 

autoencoder(VAE). 
 

3  Results 
 

The performance of the three different network structures (AE, GAN, and VAE) 

across the three calvaria (‘HS1’, ‘HS2’, and ‘HS3’) was compared to each other. The 

ultimate goal of the proposed network is to achieve accurate FUS focus on the 

placement of transducer. So, we evaluated conformity between the targeted region 

and the FUS focus obtained by binarizing the pressure field predicted from the 

forward simulation using the network. Intersection over union (IoU) of ground truth 

and predicted FUS focus on the desired target region was evaluated for the respective 

test data as shown in Figure 1. 
 

4  Conclusions and Contributions 
 

In this paper, a surrogate model of wave propagation problem utilizing deep learning 

technique was presented for accurate delivery of FUS focus through the cranium. The 

proposed neural network can provide a real-time solution with high accuracy in terms 

of IoU depending on the position and orientation of the transducer for producing the 

FUS focus on the given target region.  
 

 A surrogate model has been widely used to solve various engineering and scientific 

problems. Unlike a simple problem, a challenging problem demands heavy 

computation time involving an iterative solution scheme. Such extended simulation 

time brings difficulty in using computational methods in a practical application, 

especially in medical applications with lots of unexpected situations. Since the deep-

learning based surrogate model presented in this study has the capability for providing 

real-time feedback, it is expected to be serve as a key technology to open an avenue 

for new applications.  
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