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Abstract 
 
In the present contribution, a static and a free vibration analysis of anisotropic doubly-
curved shells is performed employing higher order theories according to the 
Equivalent Single Layer (ESL) approach. A unified formulation is adopted for the 
description of the field variable, and the geometry of the structure is described by 
means of a set of curvilinear principal coordinates within the reference surface. The 
fundamental governing equations are derived from the Hamiltonian Principle, and 
both natural and non-conventional boundary conditions are enforced to the model. 
General distributions of external surface loads are applied to the structure. The 
numerical implementation of the differential problem is performed directly in the 
strong form via the Generalized Differential Quadrature (GDQ). The model is 
validated with success from a comparison several refined three-dimensional solutions 
developed with commercial packages. Furthermore, sensitivity analyses outline the 
influence of the main governing parameters on the static and dynamic structural 
response. 
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1  Introduction 
 

Anisotropic materials are very frequently used in many engineering applications 
where structures of complex shapes are adopted. In this perspective, new efficient 
computational methodologies are required so that very accurate results are carried out 
with a reduced computational cost [1]. 

 
Two-dimensional Equivalent Single Layer (ESL) formulations can predict with a 

good level of accuracy the three-dimensional response of doubly-curved structures if 
a higher order through-the-thickness expansion is adopted to describe the field 
variable. In this way, an efficient reduction of the material properties to the shell 
reference surface is essential, especially when lattice materials with a softcore 
behaviour can be found [2-3]. 

 
On the other hand, a Layer-Wise (LW) implementation of the structural problem 

provides best results for thick shells since the fundamental governing equations are 
solved within each lamina of laminates, and the compatibility conditions are fulfilled 
at the interlaminar level [4]. In this way, the geometric description of the structure 
employing a generalized approach is a key aspect so that structures with zero, single 
and double curvatures can be embedded in a unified framework. For arbitrarily-
shaped shell structures, a distortion of the physical domain is required. Different loads 
can be applied to the intrados and extrados of the structure, accounting for both 
smooth distributions and concentrated loads. 

 
The fundamental governing equations, derived from the well-known Hamiltonian 

Principle, can be numerically tackled following different approaches, such as the 
domain decomposition methods and spectral collocation procedures. In this 
contribution, the Generalized Differential Quadrature (GDQ) method is applied for 
the solution of the structural problem directly in the strong form, together with the 
implementation of boundary conditions [5-6]. 

 
Doubly-curved shell structures are investigated in a comprehensive way, 

accounting for a generally anisotropic linear elastic constitutive relationship within 
each lamina. Both ESL and LW solutions are provided, accounting for different 
numbers of laminae and general material orientations. Furthermore, efficient 
algorithms are provided for the homogenization of lattice cores. An efficient strategy 
is adopted for the assessment of natural boundary conditions and non-conventional 
external constraints, accounting for a generalized distribution of linear elastic springs 
along the shell edges. 

 
A series of validating examples are presented, in which the static and dynamic 

response of anisotropic laminated structures with different curvatures is investigated. 
The numerical predictions are compared to those provided by refined three-
dimensional finite element models, showing a very good agreement between different 
approaches. The present ESL method can predict the three-dimensional response of 
structures of single and double curvatures employing a reduced computational effort. 
The present structural theory has been implemented in the package DiQuMASPAB 
[7], accounting for a higher order implementation of anisotropic doubly-curved shells. 
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2  Methods 
 
According to the ESL approach, a doubly-curved shell structure can be described 
starting from its reference surface ( )1 2,α αr , whose parametric equation is written in 
principal coordinates. If we denote with ( )1 2, ,α α ζR  the generic position vector of a 
doubly-curved structure, one gets: 

 ( ) ( ) ( ) ( )1 2
1 2 1 2 1 2

,
, , , ,

2

h
z

α α
α α ζ α α α α= +R r n  (1) 

where ( )1 2,h α α  stands for the shell thickness, whereas 2z hζ=  is a dimensionless 
coordinate for the identification of the points alongside the normal direction ( )1 2,α αn

. Starting from Eqn. (1), a unified approach is adopted for the description of the field 
variable, taking in account a proper set ( ) ( )kτ ζF  of generalized thickness functions, 
referred to a generic τ -th kinematic expansion order. The three-dimensional 
displacement field vector ( ) ( ) ( ) ( ) ( )

1 2 1 2 3, , ,
Tk k k kt U U Uα α ζ  =  U  can be thus expressed as: 
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+

=
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being ( ) ( )1 2, , tτ α αu  the generalized displacement field vector referred to each 
0,..., 1Nτ = + , lying on the shell reference surface. From the proper selection of 

( ) ( )kτ ζF , a series of three-dimensional deflection issues can be effectively described. 
If a laminated structure composed by l  laminae is considered, each k -th layer of the 
stacking sequence, with 1,...,k l= , can be assumed as a generally anisotropic 
continuum, whose three-dimensional constitutive relationship  between stress and 
strain vectors ( )kσ  and ( )kε  reads as follows: 
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 (3) 

where ( ) ( ) ( ) ( )( )Tk k k k=E T E T  denotes the rotated stiffness matrix of the material. For the 

sake of completeness, is the rotation matrix ( )kT  accounts for the material orientation 
( )kϑ  with respect to 1α  curvilinear direction, whereas ( )kE  is the three-dimensional 

stiffness matrix written in the material reference system [7]. One gets: 
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From the computation of the elastic strain energy, the kinetic energy, and the virtual 
work of external loads within the Hamiltonian Principle, the fundamental set of the 
governing equations can be derived for each τ -th kinematic expansion order, as 
follows: 

 ( ) ( ) ( ) ( ) ( )
1 1

0 0
0 for 0,..., 1

N N

Nτη η τη η τ

η η

τ
+ +

= =

− + = = +∑ ∑L u M u q  (5) 

being ( )τηL  the fundamental matrix and ( )τηM  the generalized inertial matrix. External 
loads ( ) ( ) ( )

1 2 3, ,q q q± ± ±  applied at 2hζ = ± , respectively, are embedded in the model once 
they are reduced to the reference surface with the vector ( )τq , with 0,..., 1Nτ = + . The 
numerical implementation is performed employing the GDQ method, which provides 
a discretization of the derivative of a generic n -th order as a weighted sum of the 
values assumed by an unknown function f  in a pre-determined set of QI  discrete 
points. Referring to the one-dimensional case, it gives: 

 ( ) ( ) ( ) ( ) ( )
1

 = 1, 2,..., 
Q

i

In
n n

i ij j Qn
jx x

f x
f x f x i I

x
ς

==

∂
= ≅

∂ ∑  (6) 

being ix  the generic point of the adopted computational grid, whereas ( )n
ijς  are the 

weighting coefficients calculated with a recursive procedure. In the same way, the 
numerical integrations employed in the computation of the components of ( )τηL  are 
performed with the Generalized Integral Quadrature (GIQ) method, reading as: 

 ( ) ( )
1

j Q

i

x I
ij
k k

kx

f x dx w f x
=

= ∑∫  (7) 

where ij
kw  are the GIQ weighting coefficients. 

 

3  Results 
 
We present a series of examples where the accuracy of the present formulation is 
outlined. Three-dimensional finite element solutions have been adopted as a reference 
results. Structures with different curvatures, thickness variations and lamination 
schemes have been considered. For each case, vibration frequencies have been 
evaluated, and the influence of the selection of the thickness functions within the 
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model have been outlined. Furthermore, the static deflection has been considered for 
a comprehensive set of case studies, and various load distributions have been applied. 
 
When higher order theories are considered, the stretching effect is well predicted by 
the model. Furthermore, the proposed model is suitable for the prediction of complex 
interlaminar effects, especially for softcore layers. We report some simulations 
performed on a fully-clamped ellipsoid. According to Eqn. (1), the reference surface 
equation, expressed in principal coordinates, reads as: 

 

( ) ( )
2 2 2 2 2

1 1
1 2 2 1 1 2 22 2

2 2 2 2 2
2 2

1 32 2

sin cos
, cos cos sin

sin cos
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b
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α α
α
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 − 
 + −
 + −
 − 

r e e

e

 (8) 

setting 3 ma = , 1.5 mb =  and 1 mc = . Accordingly, ( )1 2,α αr  has been defined so that 

( ) 0 1 0 1
1 2 1 1 2 2, , ,α α α α α α   ∈ ×    , where 0

1 0α = , 1
1α π= , 0

2 6α π=  and 1
2 5 6α π= . The 

structure is made of three layers of triclinic material ( )( )37750 kg / mkρ = , being 

( )0 / 30 / 45  and 1 2 3 0.035mh h h= = = . The triclinic material is characterized by the 
following stiffness matrix: 

 ( )

98.84 53.92 0.03 1.05 0.1 50.78
53.92 99.19 0.03 0.55 0.18 50.87
0.03 0.03 22.55 0.04 0.25 0.02

GPa
1.05 0.55 0.04 21.1 0.07 1.03

0.1 0.18 0.25 0.07 21.14 0.18
50.78 50.87 0.02 1.03 0.18 87.23

k

− 
 − 
 −

=  
− 

 − − −
 

−  

E  (9) 

In Table 1 the first ten mode frequencies have been reported. The GDQ solution has 
been calculated with a Chebyshev-Gauss-Lobatto grid [6] with 31N MI I= = . When 
higher order theories are adopted, the results perfectly match those of a refined 3D 
FEM model with C3D20 parabolic brick elements, especially when the zigzag 
functions are adopted in Eqn.(2). In Figure 1 we report the first nine mode shapes of 
the structure calculated with the EDZ4 theory. A uniform surface load equal to 

( )
3 5000 Nq + = −  has been then applied to the structure, and the static response of the 

ellipsoid has been calculated with the higher order formulation of Eqn. (5). The three-
dimensional static behaviour along the thickness of the shell has been derived at 

( ) ( )( )1 0 1 0
1 1 2 20.25 ,0.25α α α α− − . Different higher order theories have been adopted, as 

well as classical FSDT and the TSDT theories [6]. In Figure 2 the distributions of the 
displacement components have been calculated from Eqn. (2), whereas in Figures 3-
4 the stress and strain components have been evaluated from the recovery procedure 
outlined in Ref. [7]. 
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Ellipsoid 
(CCCC) 

Mode 
[ ]Hzf  

3D 
FEM FSDT TSDT ED2 EDZ2 ED3 EDZ3 ED4 EDZ4 

DOFs 601317 5046 10092 7569 10092 10092 12615 12615 15138 
1 107.02 107.10 107.10 106.99 106.95 107.01 107.01 107.00 107.00 
2 111.09 111.04 111.05 110.96 110.83 111.03 111.02 111.00 111.00 
3 158.18 158.25 158.26 158.07 157.93 158.14 158.14 158.12 158.12 
4 177.50 177.52 177.54 177.35 177.17 177.47 177.47 177.45 177.45 
5 181.62 181.23 181.26 181.26 180.88 181.47 181.46 181.41 181.40 
6 201.67 201.79 201.80 201.55 201.39 201.65 201.64 201.63 201.63 
7 228.52 228.49 228.52 228.25 227.94 228.47 228.47 228.44 228.44 
8 233.14 232.44 232.50 232.57 232.00 232.97 232.96 232.90 232.89 
9 242.28 242.37 242.39 242.10 241.89 242.25 242.24 242.23 242.22 
10 255.05 254.86 254.89 254.80 254.51 255.00 255.00 254.98 254.98 

Geometric Inputs: 
3 ma = , 1.5 mb = , 1 mc =  

0
1 0α = , 1

1α π= , 0
2 6α π=  and 1

2 5 6α π=  

Table 1: Free vibration analysis of a fully-clamped ellipsoid laminated with 
generally anisotropic materials employing higher order theories. 

 

 
 

1 107.00 Hzf =  

 
 

2 111.00 Hzf =  

 
 

3 158.12 Hzf =  
 

 
 

4 177.45 Hzf =  

 

 
 

5 181.40 Hzf =  

 

 
 

6 201.63 Hzf =  

 
 

7 228.44 Hzf =  

 
 

8 232.89 Hzf =  

 
 

9 242.22 Hzf =  
Figure 1: First nine mode shapes of a fully-clamped ellipsoid laminated with 

generally anisotropic materials employing the EDZ4 theory. 
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As can be seen, classical ESL approaches are not capable of providing the out-of-
plane stretching effects, whereas a higher order assumption is capable of well 
predicting the out-of-plane response of the structure. Furthermore, only a higher order 
assumption for the out-of-plane displacement field component can predict the 
through-the-thickness stretching effect. As a matter of fact, the stress distribution 
perfectly fulfils the equilibrium conditions due to the application of external loads. 
 

 

 

 
Figure 2: Through-the-thickness distributions of the displacement field components 

calculated by means of various higher order ESL theories of a fully-clamped 
ellipsoid subjected to a uniform surface load applied at the top surface. 
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Figure 3: Through-the-thickness distributions of the three-dimensional strain 
components calculated by means of various higher order ESL theories of a fully-
clamped ellipsoid subjected to a uniform surface load applied at the top surface. 

 

4  Conclusions and Contributions 
 
In the present contribution, some higher order theories have been adopted in a 
generalized two-dimensional formulation for the static and free vibration analysis of 
laminated anisotropic doubly-curved shells. The field variable has been described 
employing a unified formulation, and a curvilinear set of principal coordinates have 
been adopted for the geometric description of the structures. A mapping procedure 
has been also adopted for the distortion of arbitrarily-shaped structures, and a 
rectangular computational domain has been obtained. The fundamental equations and 
the boundary conditions have been numerically tackled in the strong form with the 
GDQ method, thus avoiding the employment of pre-determined set of shape functions. 
An in-plane and an out-of-plane general distribution of linear elastic springs have been 
applied at the shell edges, and non-conventional boundary conditions have been 
enforced to the structure. Furthermore, at the top and the bottom surfaces of the shell 
general distributions of loads have been applied, and an efficient methodology has 
been followed for the assessment of concentrated loads. Static and dynamic responses 
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of different kind of structures have been investigated, and the results have been 
compared with success with those provided by other trustworthy formulations. Very 
accurate results have been obtained with a significantly reduced computational cost. 
 
 

  

  

  
Figure 4: Through-the-thickness distributions of the three-dimensional stress 

components calculated by means of various higher order ESL theories of a fully-
clamped ellipsoid subjected to a uniform surface load applied at the top surface. 
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