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Abstract 
 

This paper proposes a domain-aware multifidelity scheme to speed-up the airfoil 

shape optimization in a cross-regime scenario where the aerodynamic domain evolves 

with the Mach number. Our strategy relies on a multifidelity Bayesian framework 

based on a surrogate model iteratively updated through a multifidelity acquisition 

function that selects the next design configuration and level of fidelity to query. We 

implement the multifidelity Gaussian process as the aerodynamic surrogate model and 

formulate an original domain-aware multifidelity acquisition function informed by the 

evolution of the fluid domain. This property allows to wisely select the level of fidelity 

of the aerodynamic model considering the compressibility and non-linear effects at 

higher speed regimes, improving the accuracy of the surrogate model. We validate 

our approach for the benchmark test-case of the constrained shape optimization 

problem of a RAE 2822 airfoil. The results suggest that our strategy outperforms 

popular multifidelity and single-fidelity methods reducing the drag coefficient of the 

optimized airfoil with an improvement of the 24% respect to the baseline airfoil with 

a limited computational budget.  
 

Keywords: multifidelity method, domain-awareness, Bayesian optimization, active 

learning, cross-regime, aerodynamic optimization. 
 

1  Introduction 
 

Aerodynamic design optimization is a complex and demanding problem 

characterized by expensive evaluations of the objective function and a large number 
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of design variables and constraints [1]. To produce superior aerodynamic 

configurations, modern engineering approaches require to accurately predict the fluid 

domain through high-fidelity models based on the numerical solution of  Reynolds-

Averaged Navier-Stokes (RANS) equations, which is a challenging and expensive 

task [2]. In particular, accurate models are essential to depict the aerodynamic field in 

the transonic regime, where the flow is characterized by local supersonic regions with 

shock waves that cause the separation of the viscous boundary layer.  

 

However, the enormous computational cost required to repeatedly compute 

numerical simulations makes unfeasible to rely exclusively on high-fidelity models 

for trade-off analysis. To address these difficulties, aerodynamic optimization can 

take advantage of low-fidelity models which introduce approximations to reduce the 

computational cost, but also may not be reliable to predict non-linear physics and 

compressibility effects that occurs at higher flight speeds. This motivates the interest 

for computational strategies capable of wisely including high-fidelity simulations and 

capture promising design configurations that may be excluded by low-fidelity 

optimization. This is particularly attractive in cross-regime optimization scenario, 

where the selection of the aerodynamic models poses additional challenges to balance 

between the accuracy of the prediction of non-linear high-speed phenomena and the 

savings in computational cost. 

 

This paper presents a multifidelity Bayesian optimization framework [3,4,5,6] 

based on a domain-aware active learning scheme for the dynamic principled selection 

over multiple aerodynamic models at different levels of fidelity, accounting for the 

evolution of the fluid regime and the associated physical phenomena. Our strategy 

combines the multifidelity observations of the objective function into a single 

surrogate model, and repeatedly maximizes a multifidelity acquisition function to 

select the next design configuration and the appropriate level of fidelity of the 

aerodynamic representation to query. The formulation of our multifidelity acquisition 

function comes with a domain-aware utility function that permits to grasp the 

evolution of the fluid domain, encouraging the use of high-fidelity predictions at 

higher speed regimes where transonic phenomena occur. This element of the 

computational strategy permits to include the knowledge of the physical domain in 

the active learning scheme, improving the selection of the level of fidelity to query 

and the accuracy of the aerodynamic surrogate model. We demonstrate our strategy 

using the benchmark constrained shape optimization problem of a RAE 2822 

developed by Quagliarella and Diez [7].  
 

2  Methods 
 

Our strategy synthetizes the representations of the objective function {𝑓(𝑙)}𝑙=1
𝑙=𝐿 at 

different levels of fidelity 𝑙 = 1, . . , 𝐿 into a surrogate model defined extending the 

Gaussian process (GP) [8] to a multifidelity setting using an autoregressive scheme 

and modeling the first prior 𝑓(1) as a GP [9] :  

 



 

3 

 

𝑓(𝑙) = 𝜌𝑓(𝑙−1)(𝒙) + 𝛿(𝑙)(𝒙)     𝑙 = 2, … , 𝐿 

( 1 ) 

where 𝜌 is a scaling factor, and 𝛿(𝑙)(𝒙) models the discrepancy. Based on the 

surrogate model, we define the multifidelity acquisition function 𝑈 conceived for the 

cross-regime aerodynamic optimization as follows: 

 

𝑈(𝒙, 𝑙) = 𝑀𝐹𝐸𝐼(𝒙, 𝑙)𝛼𝐷𝐴(𝒙, 𝑙, 𝑀) 

( 2 ) 

where 𝑀𝐹𝐸𝐼(𝒙, 𝑙) is the multifidelity expected improvement [4] and 𝛼𝐷𝐴 is the 

domain-aware utility function: 

 

𝛼𝐷𝐴(𝒙, 𝑙, 𝑀) = {

      1                            𝑖𝑓 𝑙 ≠ 𝐿

 
𝑀∗

𝑀∗ − 𝑀(𝒙)
             𝑖𝑓 𝑙 = 𝐿

 

( 3 ) 

where 𝑀∗ = 1. The utility function 𝛼𝐷𝐴 is sensitive to the Mach number, accounting 

for the evolution of the aerodynamic regime. As the Mach number approaches to the 

sonic condition, the flow is characterized by local shock waves, large-scale separation 

and unsteadiness. The accurate prediction of these phenomena requires a refined 

computational mesh that permits to numerically estimate the effects on the 

aerodynamic performances. Therefore, 𝛼𝐷𝐴 is conceived to increase the values of the 

acquisition function when 𝑀 > 0.8, encouraging the use of the highest-fidelity model 

at higher speed regimes. 

 

The constrained airfoil optimization problem aims at computing the optimal shape 

and flight Mach number that jointly minimize the drag coefficient 𝐶𝑑 of a RAE2822 

airfoil subject to maintain a prescribed lift coefficient 𝐶𝑙 and range of the pitching 

momentum coefficient 𝐶𝑚:  

 
min 
𝒙∈𝒳

   𝐶𝑑        

          𝑠. 𝑡.     𝐶𝑙 = 0.824
                                       −0.1 ≤ 𝐶𝑚 ≤ −0.01

                          𝑡/𝑐 = 0.1211
                      𝑟 ≥ 0.007𝑐

            𝜏 ≥ 5°

                         𝑡85/𝑐 ≥ 0.02
                        𝒳 = 𝐼𝑤 × 𝐼𝑀

 

( 4 ) 

Additional geometry constraints include the thickness to chord ratio 𝑡/𝑐, the trailing 

edge angle 𝜏, and the thickness at the 85% of the chord 𝑡85. The design variable 𝒙 

includes the weights of the shape modification functions 𝒘 = {𝑤1, … , 𝑤6} and the 

Mach number 𝑀. The design space 𝒳 is bounded by the move limits on the weights 
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𝐼𝑤 = [−0.5,0.5]6 and the Mach number 𝐼𝑀 = [0.6,0.99]. As developed by [7], the 

computational grids are dynamically generated through GMSH v4 and the numerical 

solution of the RANS are computed using SU2 v6.2.0. We define three levels of 

fidelity for the aerodynamic modeling modifying the element scale factor 𝐸𝑆 of the 

mesh: 𝐸𝑆(3) = 5.5 for the high-fidelity model (44200 cells), 𝐸𝑆(2) = 12 for the mid-

fidelity model (29500 cells), and 𝐸𝑆(1) = 20 for the low-fidelity model (16000 

cells). Figure 1 illustrates the mesh for the three models.  

 

 

  
(1a) (1b) 

 

 

(1c)  

Figure 1: High-fidelity (1a), mid-fidelity (1b) and low-fidelity (1c) mesh. 

 

3  Results 
 

In this section, we illustrate the results of the RAE2822 shape optimization comparing 

the proposed Domain-Aware Multifidelity Bayesian Optimization (DA-MFBO) 

framework with the standard Multifidelity Bayesian Optimization framework 

(MFBO) proposed by Huang et. al [4] and the single high-fidelity efficient global 

optimization (EGO) algorithm developed by Jones et. al. [10].  

 

Figure 2 illustrates the minimum drag coefficient as a function of the cumulative cost 

at each iteration of the optimization. We set the cost of each fidelity as the relative 

element scale  𝜆(𝑙) = 𝐸𝑆(𝑙)/𝐸𝑆(𝐿) and impose a maximum computational cost of 100. 

All the three methods are initialized with the same initial observations determined 

through a Latin hypercube sampling and are capable to progressively improve the 

baseline solution of the unmodified RAE2822. However, it can be observed that our 

DA-MFBO is more effective than MFBO and EGO, providing larger improvements 
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in the reduction of the drag coefficient with a limited computational cost. Table 1 

summarizes the overall minimum of the 𝐶𝑑 and the best design configurations 

determined by the three algorithms. In particular, the DA-MFBO algorithm 

outperforms the competing methods reaching a 𝐶𝑑 equal to 0.01347, which 

corresponds to a design improvement of about the 24% with respect to the baseline. 

The outcome suggests that DA-MFBO computes more accurate aerodynamic 

surrogate model thanks to the domain-awareness property, which allows to use high-

fidelity data at higher Mach numbers and capitalizes over lower-fidelity observations 

at lower speed regimes where the predictions of the aerodynamic models are closer. 

This aspect permits to effectively inform our multifidelity acquisition function 

guiding the selection of promising shape configurations and the appropriate level of 

fidelity to evaluate. Figure 3 compares the optimized airfoil shapes obtained with 

EGO, MFBO and DA-MFBO with the unmodified RAE2822 airfoil, while Figure 4 

presents the corresponding pressure coefficient distribution. DA-MFBO generates a 

profile that determines a weaker shock wave reducing the loss of pressure downward 

and increasing the efficiency.  

 

 
 

Figure 2: Performances of the DA-MFBO method compared to MFBO, EGO and 

the baseline RAE2822. 

 

Method 𝐶𝑑 𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6 𝑀 

EGO 0.01500 0.272 0.061 -0.107 -0.424 -0.117 0.162 0.664 

MFBO 0.01446 -0.359 -0.450 0.135 0.246 0.435 -0.337 0.657 

DA-MFBO 0.01347 0.498 -0.454 -0.098 -0.266 -0.356 -0.124 0.656 

 

Table 1: Optimum design configurations. 

 



 

6 

 

 
Figure 3: Airfoil shapes comparison. 

 

 

 

  
(4a) (4b) 

 

 

(4c)  

Figure 4: Pressure coefficient for the design configurations obtained with EGO (4a), 

MFBO (4b) and DA-MFBO (4c) algorithm. 
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4  Conclusions and Contributions 
 

This paper introduces a domain-aware multifidelity Bayesian framework for the 

aerodynamic design and optimization in a cross-regime scenario that permits to: (i) 

leverage multiple models at different levels of fidelity to compute an efficient 

aerodynamic surrogate model, and (ii) iteratively learn the surrogate model through a 

domain-aware active learning scheme that includes the informative content about the 

fluid domain. We use the multifidelity Gaussian process as the surrogate model and 

propose a tailored formulation of the multifidelity acquisition function to effectively 

guide the active learning task. The objective is to define a computational framework 

to wisely include high-fidelity aerodynamic models in the optimization process 

without unfeasibly increasing the computational cost.  

 

Our multifidelity acquisition function is computed starting from the information of 

the surrogate model, and includes a domain-aware utility function that is sensitive to 

the current fluid regime to select promising design configurations and the accuracy 

of the aerodynamic model to query. During the iterative process, the domain-aware 

utility function captures the evolution of the fluid domain with the flight Mach 

number prioritizing the expensive high-fidelity model at higher speed regimes, where 

cheap low-fidelity models do not accurately predict compressibility and non-linear 

effects. This aspect improves the accuracy of the aerodynamic model, enhancing the 

performances of the optimization process.  

 

We demonstrate our domain-aware strategy in the optimization of the shape of a 

RAE2822 airfoil to minimize the drag coefficient maintaining a constant lift 

coefficient and subject to constraints on the pitching moment coefficient and the 

airfoil geometry. The aerodynamic domain is modelled computing the numerical 

solution of RANS through three aerodynamic models at different levels of fidelity, 

where the higher the fidelity the more refined is the discretization of the 

computational grid and time consuming. We compared our method against two well 

accepted Bayesian algorithms: the EGO single high-fidelity strategy and the 

multifidelity Bayesian framework based on the multifidelity expected improvement. 

The results demonstrate that the domain-awareness introduced in the active learning 

scheme allows to achieve better design solutions than competing methods leveraging 

the fluid domain information to compute an efficient aerodynamic surrogate model.  
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