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Abstract 
 

This paper presents an effective framework for predicting magnetic properties and 

optimizing the material design of Mn-Zn ferrite core. The objective of the current 

work is to construct a high-accuracy machine learning-based surrogate model 

correlating the configuration parameters of ferrite core and its electromagnetic 

performance according to the various material composition. The finite element 

method (FEM) combined with a model that considers the dielectric effect was 

developed to analyze dimensional resonance by magnetic simulation. The dielectric 

effect was treated as the equivalent circuit and was formulated by coupling with 

Maxwell’s equations. To accelerate evaluating performance, we construct an ANN-

based FE surrogate model. Training data is generated through the FEM-based 

electromagnetic analysis framework, and analysis-based data is added to the previous 

experimental-based data. ANN models were trained to predict microstructure 

parameters, magnetic properties, and core loss using expanded data. Finally, the Mn-

Zn ferrite core performance for various compositions can be mapped through the 

effective surrogate model and identifies material compositions with optimized 

magnetic properties. Therefore, the magnetic properties are effectively calculated by 

the trained neural network, and the optimized composition of the ferrite core shows 

that the proposed framework can significantly improve the efficiency of material 

design. 
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1  Introduction 
 

Power electronic devices have been widely applied to consumer devices and 

electric vehicles, and their efficiency improvement is strongly required to reduce 

energy costs. One of the primary energy loss factors in the devices is the magnetic 

core loss in inductors and transformers. To accurately estimate the magnetic loss, it is 

important to consider the dielectric constant caused by a thin high-resistive layer at 

the grain boundary of magnetic material. In recent years, particularly in the 

development of high-frequency power electronics devices, an increasing need has 

emerged for a highly accurate simulation methodology to reduce energy loss. 

Therefore, we have endeavored to develop a micromagnetic field simulation 

considering the dielectric constant and finite element method. 
 

Material optimization is important to construct Mn-Fe ferrite core to reduce energy 

loss. However, long hours are required to optimize the material compositions of the 

core with a complicated composition ratio. In addition, it is difficult to judge whether 

the designed shape is sufficiently optimized. Metaheuristic algorithm has been widely 

used in various optimal design problems for its excellent global search capabilities [1]. 

However, it generally requires a large number of finite-element analyses for fitness 

evaluation, and thus it leads to a high computational cost to search for the optimal 

solution. To solve this problem, an artificial neural network (ANN) has been used as 

the surrogate model, which works much faster than FEM in some previous works [2]-

[5].  

 
 

2  Methods 
 

In this paper, magnetic loss and permeability are set as the objective functions 

under various inductance values (lower limit) and constraints of the external 

dimensions and minimum coil winding space. As the operating condition of the 

inductor, the frequency is set to 100-300 kHz, and the average magnetic flux density 

in the central section of the core is set to 200 mT. 
 

The Mn–Zn ferrite core has a complex microstructure that the crystalline grains 

are wrapped in thin high resistance oxide layers to suppress the eddy current. To 

calculate the dielectric effect, the model equations were established using an 

equivalent circuit on a simplified microstructure. The crystal grains, which have a 

high conductivity (𝜎1), are separated by thin layers, which have a low conductivity 

(𝜎2), and a dielectric constant (𝜀𝑟). These considerations were implemented in our 

magnetic simulator based on the finite element method using the magnetic field 

equations of the A-𝜑 method with the magnetic vector potential (A) and the electric 

scalar potential (𝜑). In our analytical method, magnetic field equations can be 

written as 
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where L is the diameter of the grains, and the thickness of the boundary layer is D. 

𝜇0 is permeability in the vacuum. 𝑞 and 𝐽𝑒𝑥 are expressed as vectors and represent 

the charge density accumulated in the surface of the grain boundary and an exciting 

current, respectively. 
 

In magnetic field equations, the excess loss could be occurred by microscopic 

magnetization process such as domain wall motion. A relation between magnetic 

field (H) and magnetic flux density (B) was given by the following equation, 
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We assumed that the effective field due to the excess loss was proportional to the time 

derivative of the magnetic flux density (dB/dt) and confirmed that the core losses were 

well estimated by introducing a coefficient of excess loss (𝑐𝛽) which considers the 

role of the domain wall motion. 
 

We optimize manganese–zinc (Mn–Zn) ferrite core using ANN-based surrogate 

models. An ANN is a field in machine learning, which mathematically models the 

mechanism of human nerve cells. It assumes an appropriate model between the input 

and output. It adjusts the parameters of the model by learning a large number of data 

sets to perform an accurate regression and classification. To design an ANN model, 

training data sets of magnetic properties and core loss were obtained from the 

magnetic field FE analysis in advance by combining the randomly generated material 

parameters of the core. For the ANN activation function, we applied the rectified 

linear unit, which is advantageous in terms of performance.  
 

 

3  Results 
 

To design an ANN model, 1000 data sets of ferrite core and magnetic loss were 

obtained from the magnetic field analysis in advance by combining the randomly 

generated material parameters of the core. Of the data sets obtained by the calculation, 

70% were used for updating the weighting coefficient, and the remaining 30% were 

used for verification or evaluation. The number of intermediate layers of both NNs 

was set to 1, and the size of the middle layer was set to 10 after a few trials. For the 

ANN activation function, we applied the rectified linear unit, which is considered to 

be advantageous in terms of performance. As a result of the NN design, we obtained 

a coefficient of determinations (R2) of more than 0.999 between the magnetic 
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simulation results and the NN results. These results show that the designed NNs can 

be applied as highly accurate surrogate models. 
 

The magnetic loss is minimized by solving the optimization problem. In this paper, 

we solve optimization problems to obtain optimal material compositions for various 

Mn, Zn, and Fe values. The two optimized cases were compared for twelve 

experimental cases that minimized core lo under permeability conditions for optimal 

results. The experimental groups were selected by adjusting the material variable 

values of the optimal case. In addition, we changed variables for comparing the result 

of the objective function and constraint condition; the Mn, Zn, and Fe were changed. 

As a result of optimal cases, if material values were changed, the core loss of ferrite 

core did not reach the minimum value or could not satisfy the permeability constraint. 

 

4  Conclusions and Contributions 
 

We applied the surrogate models of the ANN designed based on the calculation 

data by magnetic simulation considering dielectric constant. This paper aims to 

develop an efficient design method of the material compositions of Mn-Fe ferrite 

cores in which the trained ANN fast solves optimization problems. By applying the 

ANN surrogate models in the optimization, the calculation time is significantly 

shortened, and the difference between the results obtained from FEM and ANN is 

shown sufficiently small. The ferrite core with one of the optimum material 

compositions is manufactured. Its measured magnetic loss and permeability are shown 

to be in good agreement with the simulation and ANN results (within 10%). For future 

works, we plan to further improve the simulation accuracy, increase the number for 

the parameters to be optimized, and apply this method to other devices. 
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