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Abstract 
 

A one-equation turbulence model is formulated which retains an anisotropic eddy 

viscosity coefficient. Consequently, the current model is deemed to be potential for 

accounting near-wall turbulence and strong flow in-homogeneity, enhancing the 

predictive accuracy for complex separated and reattaching flows. Furthermore, the 

devised turbulence model retrieves the link to the k- model and is likely to be 

extendable toward a non-linear algebraic Reynold stress model. Intuitively, the 

current artifact may accommodate a variable eddy-viscosity coefficient for an LES 

(large eddy simulation) or a DES (Detached eddy simulation) method. 
 

Keywords: one-equation model, near-wall turbulence, non-equilibrium flow, LES, 

DES. 
 

1  Introduction 
 

To replicate both equilibrium and non-equilibrium flow in one-equation models, 

considerable innovative research has been undertaken [1–7]. Empiricism and 

arguments of dimensional analysis are involved in the widely used one-equation 

Spalart and Allmaras (SA) model [1], avoiding the link to the traditional k-  

turbulence model. Internal and external flows are extensively utilized to calibrate and 

validate the SA model; providing reasonable predictions. However, connection to the 

k-  model has been ameliorated with recently developed one-equation models by 

Rahman et al. [3–6]. They reproduce relatively improved predictions for separated 

and reattaching flows owing to their capability in accounting for non-equilibrium 
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effects via variable model coefficients. In fact, a single-equation turbulence model 

establishes a good compromise between algebraic and two-equation models because 

of inheriting transport effects. 
 

Customarily, one/two-equation models encounter non-equilibrium effects when 

being embedded with an anisotropic eddy-viscosity coefficient C
, parameterized 

with a production to dissipation ratio kP   accompanied by invariants of mean 

strain-rate and vorticity tensors. The resulting C
 suppresses non-physical energy 

components at moderate/severe strain rates on the perspective of realizability 

constraint, representing a minimal requirement for the turbulence model. Therefore, 

the current eddy-viscosity formulation with an appropriate strain-dependent C
 

reinforces turbulence anisotropy in a single-equation model. In addition, k and   are 

explored in the present model, reviving presumably the competency in speculating 

complex separated and reattaching flows.  
 

2  Formulation of present turbulence model 
 

A transport equation for 2R C k =  (pseudo-eddy viscosity) can be obtained using 

the two-equation k-  turbulence model. The following relation is used to construct 

an R-transport equation: 
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where the substantial derivative is indicated by D/Dt. Equations of k and   at a 

high Reynolds number can be provided with: 
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where kP  implies the production term; relevant model constants are k ,  , 1C  

and 2C  Combining Equations (1)-(3) and carrying out some algebra with 

k R  = = , result in an R-transport equation:  

( ) ( )
2

1 2 2

2
2 2

4 2
      

k

j R j R j j

R j j R j j

DR R R R R k k
C P C k

Dt k x x k x x

R k R R R

k x x x x

 
 

 

     
= − − − + −  

      

   
+ −

   

   (4) 

Apparently, the diffusion/destruction term 
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appearing in the above-mentioned relation may be excluded in order to avoid the 
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numerical stiffness. Therefore, Equation (4) can be regularized using the Bradshaw 

relation 
du

uv C k R
dy

− = =  [8] with the k-  source and sink terms: 
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where ( )1 2 1C C C C  = − , 1 1.44C = , 
2 1.9 4C C = + , 0.09,C =

2 2 RC = , and

 
1 1.44C = , 

2 1.9 4C C = + , 0.09,C =  2 2 RC =  and 1.3R =  

The Park-Park limiter [9] is applied to determine the eddy-viscosity T : 
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where the hybrid time scale Tt can be given by [5]: 
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where ReT denotes the turbulent Reynolds number, 2TC =  is an empirical 

constant and  (  = ; ρ is the density and μ is the molecular viscosity) signifies the 

kinematic viscosity. 
 

The mean strain-rate Sij and vorticity Wij tensors, required afterward can be defined 

By 
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The invariants of vorticity and mean strain-rate tensors can be represented by 

2 ij ijW W W=  and 2 ij ijS S S= , respectively. The eddy-viscosity coefficient *C
 in 

Equation (6) has been formed with mean strain-rate and vorticity invariants; *C
 as 

suggested in Reference [5] has been adopted: 
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where non-dimensional mean shear strain-rate and mean rotation-rate parameters 

are defined by η = α2TtS and ξ = α3TtW, respectively. Coefficients α1-α3 in Equation 

(9) are given by: 
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with b = bijbij; the Reynolds stress anisotropy bij is characterized by 
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where unlike  ,   disappears at the solid wall due to the product ( )1.3

1vR f . 

However, w  indicates the wall-dissipation rate, balanced by the viscous-diffusion rate 

at the wall vicinity; w  is conventionally modelled as: 

2
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where A = Cμ = 0.09 from DNS data. Apparently, the total dissipation-rate   is 

likely to be benefited by the wall dissipation-rate w  within the wall-layer. 
 

3  Results 
 

Fully-developed turbulent channel flows at Reτ = 180, 395 and 640 are simulated to 

substantiate the model accuracy in replicating near-wall turbulence. Computations are 

carried out in a half-width h of the channel using a 1-D (one-dimensional) RANS 

solver. A non-uniform 1×64 grid resolution for Reτ = (180; 395) and 1×128 grid 

resolution for Reτ = 640 are assumed to be adequate to accurately describe 

characteristics of the flow. To assure the viscous sublayer resolution, the first near-

wall grid spacing is set to y+ ≈ 0.3. A cell-centered finite-volume approach is applied 

to solve the flow equations. Results are converted to the form of u+ = u/uτ, k
+ = 2k u

, 2uv uv u
+ = , 4v u + = , where uτ is the wall-friction velocity; comparisons are 

made by plotting these quantities versus y yu v

+ = . Turbulence quantities are 

extracted from DNS data [12, 13]. Predictions of the present model are compared with 

those of the widely-used SA turbulence model [1]. 
 

The stream-wise mean x-momentum equation for a 1-D incompressible flow can 

be represented by 
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where T T  =  is the kinematic eddy-viscosity; lower and upper wall locations 

of the channel are encompassed by y = (−h; h). The axial pressure-gradient ∂p/∂x 

remains constant and the continuity constraint ∂ui/∂xi = 0 is naturally satisfied, as the 

mean flow field has a 1-D feature. However, ∂p/∂x must be computed as a part of the 

solution method since the pressure gradient is not known a priori. The pressure-

velocity correction (PVC) method [14, 15] is an appropriate choice to solve the 

problem. The PVC scheme keeps updating the axial pressure gradient and velocity as 

long as the fictitious mass source is minimized. 

 



 

6 

 

 

Figure 1: Velocity profiles for fully-developed turbulent channel flow. 
 

 

Figure 2: Shear stress profiles for fully-developed turbulent channel flow. 
 

 

Figure 3: Kinetic energy profiles for fully-developed turbulent channel flow. 
 

 

Figure 4: Dissipation-rate profiles for fully-developed turbulent channel flow. 
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Predicted profiles of the velocity and turbulent shear-stress from independent 

turbulence models are illustrated in Figures 1 and 2, respectively. It seems likely that 

indistinguishable predictive performances pertaining to both models are obtained. As 

can be seen, two turbulence models make pretty good correspondence with DNS data 

in both regions, comprising the linear boundary layer and wake defect layer. Present 

model performances are further assessed with turbulent kinetic energy k+ and 

dissipation-rate 
+

profiles as shown in Figures 3 and 4, respectively. Note-worthily, 

reasonable agreement of the current model with DNS data is visible without having 

transport and diffusion effects of the turbulent kinetic energy and dissipation-rate. It 

appears that the near-wall k+-profile is qualitatively well reproduced and the 

maximum magnitude of
+

is captured in the wall-vicinity, as dictated by DNS and 

experimental data. 
 

4  Conclusions 
 

A compatible eddy-viscosity coefficient is introduced with the current model, the 

potential importance of which is not obvious since only a fully-developed turbulent 

channel flow case (e.g., simple shear flow case) is computed for validation. However, 

it is believed that the modification is profoundly convenient to account for strong flow 

in-homogeneity and near-wall turbulence and therefore, it can enhance the model 

competency in speculating complex separated and reattaching flows to a greater 

extent. Articulately, the link to the k −  model with the present model is retrieved 

and likely to be extendable toward a non-linear algebraic Reynolds stress model. 

Intuitively, the present formulation may accommodate a variable eddy-viscosity 

coefficient for an LES or a DES method. 
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