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Abstract 
 

During the simulations of the magnetohydrodynamic equations, numerical errors 
might cause the formation of non-physical divergence components in the magnetic 
field. This divergence compromises the stability and accuracy of the simulations.  In 
order to overcome this problem, several methodologies, called divergence cleaning 
methods, are proposed. Besides many comparative works between these methods, 
the construction of the best approach is still an open problem. A popular divergence 
cleaning strategy is the parabolic-hyperbolic approach due to its easy 
implementation and low computational cost in CPU time, however this approach 
just transports and diffuses the divergence components instead of eliminating them 
globally. On the other hand, the elliptic approach, also known as the projection 
method, uses a Poisson equation to eliminate the divergence effectively at a huge 
computational cost. This work proposes a successful combination of these 
approaches in order to create a new divergence cleaning methodology that 
incorporates the advantages provided by both methods, a small CPU time and a 
good accuracy. 
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1  Introduction 
 

 
 
In recent years, the study of phenomena associated with the interplanetary 
environment has been increasing due to the significant consequences of those effects 
on many modern communication infrastructure systems [1]. These studies depend 
on both the analysis of the data collected from several instruments and numerical 
simulations of models such as the magnetohydrodynamic (MHD) one, which 
describes the plasma dynamo as a magnetised fluid. 
 
 
 

In particular, the numerical errors obtained during the MHD simulations cause 
the formation of non-physical divergence components in the magnetic field that may 
compromise the stability and the accuracy of the simulation. Therefore, a 
methodology capable of correcting the solution after every iteration of the time 
evolution process is required to maintain the validity of Gauss’s law for magnetism 
in the solution [2]. 

 
 
 

Several strategies, named divergence cleaning methods, are proposed in the 
literature in order to overcome this problem [3,4]. In the finite volume context, these 
strategies can be classified into two types: the ones that are characterized by lower 
computational cost and eliminate the divergence components to a sufficient extent as 
to not compromise the solution of the physical phenomena, e.g., the parabolic-
hyperbolic correction introduced in [3], and the ones that remove these divergence 
components entirely requiring a high computational cost and induce slight diffusion 
in the solution, e.g., the projection method introduced in [2]. 
 
 
 

The efficiency of different divergence cleaning methods has been compared in 
several studies [5,6]. However, construction of an optimal divergence cleaning 
approach is still an open problem considering the high performance computing 
scope. This work presents a new approach that combines the parabolic-hyperbolic 
correction with the projection method using the Generalised Lagrange Multiplier 
(GLM) context introduced in [3] and [7]. This combination aims to extract the 
advantages of the categories of both approaches, obtaining a method that effectively 
eliminates the divergence without drastically increasing the computational cost. 

 
 
 

2  Methods 
 
 
 

The equations for the ideal MHD model are given by the following system of 
equations: 
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                       (1) 
 
 with 
 

                                         (2) 
 

 The parabolic-hyperbolic approach introduced by [3] uses a formulation 
employing Lagrange multipliers to introduce a scalar field in the induction equation 
in order to transport and diffuse the divergence components. Therefore, the 
induction equation becomes 
 

                                   (3) 
 

 where the new scalar field is ruled by the equation 
 

                                               (4) 
 

 Therefore the hyperbolic and parabolic contributions are expressed by 
indexes h and p, respectively. 
 

 The projection method introduced in [2] can also be expressed in the GLM 
formulation, obtaining the elliptic correction [4]. This method consists in solving a 
Poisson equation to associate the magnetic field with divergence components to a 
scalar field so that   
 

                                                 (5) 
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 After that, the divergence free magnetic field is corrected during the time 
integration using the relation 
 

                                              (6) 
 

 This work evaluates the combination of the explicit parabolic-hyperbolic and 
the implicit elliptic approaches. The proposed method, denominated GLM triple 
correction, consists in performing the parabolic-hyperbolic approach, that produces a 
small divergence over the magnetic field, until a cleaning criteria is fulfilled. Then, 
the elliptic method is applied in order to restore the divergence constraint. The 
cleaning criteria chosen is the application of the elliptic operator after a predefined 
number of time iterations. These approaches are implemented in the MHD module 
of the AMROC framework [8,9,10,11]. 
 
 

3  Results 
 

The discussed divergence cleaning approaches are tested using several traditional 
MHD benchmarks: Magnetic field loop advection (ADV); Rotor (ROT); Orszag-
Tang vortex (OTV); Spherical Blast Wave (BWV), with usual initial and boundary 
conditions and final time. These MHD simulations were performed using the HLLD 
numerical flux with the MC limiter, Courant number of 0.4 and the parameter of 
ratio between the parabolic-hyperbolic correction is 0.4. The MHD time evolution 
method is a second-order accurate Runge-Kutta scheme. The triple correction 
executes the elliptic operation every 60 iterations. 

 

 Figure 1 presents the ratio between the divergence and the magnitude of the 
magnetic field obtained by the discussed methods for each problem. The parabolic-
hyperbolic approach obtains machine zero precision in some regions of the ROT and 
BWV problems due to the divergence errors not being transported to those regions 
yet. In general, the elliptic approach presents the lowest divergence errors, specially 
in the ADV and BWV problems. However, it exhibits the highest divergence peak in 
the ROT problem, besides presenting lower divergence globally. The proposed triple 
correction yields lower divergence errors than the parabolic-hyperbolic correction, 
especially in the regions containing structures, such as the centre of the rotor and in 
the inner parts of the blast wave. 
 

The absolute values for the divergence obtained in each case are presented in Table 
1 alongside with the correspondent CPU time. The results confirm the reduction in 
the divergence provided by the triple correction in relation to the parabolic-
hyperbolic correction. Moreover, just a slight CPU time increase is observed. In 
terms of precision, the triple correction is comparable with the elliptic operator. 
However, it reduces the CPU time significatively.    
 

As the ADV problem has an exact solution, the error obtained for the components 
Bx using each approach are presented in Table 2. The triple correction presents the 
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best result in both norms. On the other hand, the parabolic-hyperbolic correction 
produces a significantly higher error using the L1 norm. In Figure 2, we plot the 
magnitude of the magnetic field, and we can observe that the triple correction gives 
the best quality, without the spurious oscillations and background noise of the 
parabolic-hyperbolic approach and is less diffusive than the elliptic approach.  
 

Figure 1: Parameter 𝑑𝑥 ఇ⋅஻

|஻|
, obtained for the 2D problems using the discussed 

divergence cleaning approaches in a mesh with 20482 cells. 
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Figure 2: ADV Problem:ห|𝐵|หobtained using a mesh with 20482 cells using the 
discussed divergence cleaning approaches. 

 
 
 

 Method ||𝛻 ⋅ 𝐵|ଵ| ||𝛻 ⋅ 𝐵|ஶ| 𝑡஼௉௎ 

 

ADV 

 

Par-Hyp 

Elliptic 

Triple 

0.20 ൈ 10ି଺ 

2.34 ൈ 10ି଺ 

5.06 ൈ 10ି଺ 

3.99 ൈ 10ିଷ

4.18 ൈ 10ିଷ

2.40 ൈ 10ିଷ

9.47 

39.47 

12.05 

 

ROT 

Par-Hyp 

Elliptic 

Triple 

1.95 ൈ 10ିଵ 

3.71 ൈ 10ିଵ 

1.85 ൈ 10ିଵ 

1.42 ൈ 10ଶ 

2.40 ൈ 10ଶ 

1.35 ൈ 10ଶ 

0.67 

2.70 

0.67 

 

2D-OTV 

Par-Hyp 

Elliptic 

Triple 

1.55 ൈ 10଴ 

0.56 ൈ 10଴ 

1.37 ൈ 10଴ 

2.24 ൈ 10ଵ 

0.91 ൈ 10ଵ 

1.86 ൈ 10ଵ 

1.51 

5.55 

2.30 

 

BWV 

Par-Hyp 

Elliptic 

Triple 

2.00 ൈ 10ିଵ 

1.05 ൈ 10ିଵ 

1.85 ൈ 10ିଵ 

6.79 ൈ 10ଵ 

3.84 ൈ 10ଵ 

6.23 ൈ 10ଵ 

0.65 

2.81 

0.74 

Table 1: Divergence and CPU time, in hours, obtained by the discussed divergence 
cleaning methods. 

 

 
  

Norm 

Method 

Par-Hyp Elliptic Triple 

 

𝐵௫ 

𝐿ଵሺ𝑥10ି଺ሻ

𝐿ஶሺ𝑥10ିସሻ

33.57 

11.44 

7.46 

10.25 

6.91 

9.94 

Table 2: ADV Problem: Errors for𝐵௫component in the𝐿ଵand 𝐿ஶnorms obtained by 
the studied divergence cleaning approaches in the mesh with2048ଶcells using 16 

processors. 
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4  Conclusions and Contributions 
 

As a new contribution to the accuracy and quality of the solutions provided by the 
AMROC framework MHD solver, this work presents a successful new divergence 
cleaning approach that combines the parabolic-hyperbolic correction introduced in 
[3] and the elliptic correction introduced [4], creating a triple parabolic-hyperbolic-
elliptic correction that applies a multigrid strategy to overcome the performance 
limitations of the elliptic operator. This correction leads to a reduction in the global 
divergence of the magnetic field without compromising the solver performance. 
 
Further studies into optimisations of the cleaning criteria for the triple correction are 
ongoing for both two and three dimensional benchmarks.  
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