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Abstract 
 

This paper describes the parallel implementation of a monolithic fluid-structure 

interaction (FSI) algorithm that has recently been proposed as a robust solver for the 

deformation of both soft and stiff solid structures interacting with an incompressible 

fluid. The FSI solver is based upon a modification of the Navier-Stokes operator, to 

account for the presence of the solid structure in certain regions of the domain. 

Consequently, the parallel solver that is proposed is related to the domain 

decomposition method for finite element discretizations of incompressible flows. In 

particular, a partial assembly of the finite element system is undertaken so as to avoid 

communication between processors at this stage: however, when an iterative solver is 

applied neighbour-to-neighbour communication is required at each iteration. 

Furthermore, we employ a parallel preconditioner that is also based upon the domain 

decomposition method, with a suitable adaptation to account for the presence of the 

solid structure. Results are presented to illustrate the strong scaling performance on a 

representative test problem and the application to further problems is discussed. 
 

Keywords: fluid-structure interactions, incompressible flow, parallel algorithms, 

finite element method, MinRES. 
 

1  Introduction 
 

We describe the parallel implementation of a monolithic fluid-structure interaction 

(FSI) solver that is based upon the one-field fictitious domain method, introduced in 

[1]. In this approach the structure (assumed to be a hyper-elastic solid material) is 
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discretized using an unstructured finite element representation, which overlays a 

single mesh for the whole of the computational domain (occupied by both the fluid 

and the structure). The governing equations are then assembled on the single mesh, 

based upon the Navier-Stokes equations for the fluid with a suitable modification to 

reflect the presence of the solid structure. The main dependent variable is the fluid 

velocity everywhere, including in the region occupied by the structure (hence the term 

fictitious domain (FD)). In this region the velocity is interpolated onto the mesh of 

the structure and used to deform it prior to the next time step. 

When a mixed finite element (FE) method is used to discretize the incompressible 

Navier-Stokes (NS) equations the resulting nonlinear system at each implicit time 

step may be split into a convection half-step followed by a diffusion half step [2]. The 

former may be solved using the Taylor-Galerkin method, for example, whilst the 

diffusion problem gives rise to a saddle point system of the form: 

(
𝐴 𝐵
𝐵𝑇 0

) (
𝑢
𝑝) = (

𝑏
0
) 

Here, u and p are the vectors of unknown velocity and pressure coefficients at the 

corresponding FE nodes; A=M/dt+K (where M is the FE mass matrix, arising from 

the du/dt term in the NS equations, and K is the stiffness matrix, arising from the 

div(σf) term); and B is a matrix arising from the discretization of the grad(p) term in 

the NS equations, [3]. 

In our FD method, the modification to account for the presence of the structure has 

no effect on the convection half-step but changes the expressions for A and b in the 

saddle point system. Specifically, A=M/dt+K+DT(MS/dt+KS)D, where: D is the 

interpolation matrix between the mesh covering the whole domain and the mesh of 

the structure; MS is the mass matrix for the structure; and KS is the stiffness matrix for 

the structure (arising from the div(σs) term in the nonlinear elasticity equations). The 

purpose of this work is to develop a simple parallel solver for this modified saddle 

point system based upon its parallel assembly followed by a parallel preconditioned 

MinRES solver [4]. 
 

2  Methods 
 

In this section we discuss the two main components to our parallel implementation of 

the one-field fictitious domain method: assembly and solution.  

For the finite element discretization of the whole domain we use a block-structured 

mesh provided by PARAMESH [5]. This defines the mesh as the union of a number 

of mesh blocks, where each element of the mesh is a quadrilateral in 2D or a regular 

hexahedron in 3D. We use the Taylor-Hood finite element pair, [3], which consists 

of piecewise biquadratic (triquadratic) velocities and piecewise bilinear (trilinear) 

pressures in 2D (3D). The solid region is meshed using triangles in 2D (tetrahedra in 

3D), with displacements/velocities represented by linear finite elements. The whole 

domain is partitioned in space within PARAMESH, with each block assigned to a 

process (and each process holding the data for multiple contiguous blocks: a 

subdomain). The FE assembly of the matrices M and K is undertaken independently 

on each block within PARAMESH, thus allowing for a high degree of parallelism. 

The assembly of the contributions of DT(MS/dt+KS)D on each subdomain is more 

challenging however, potentially requiring substantial communication and 
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computational overhead in order to identify the subdomains that are covered by any 

of the elements in the mesh of the solid structure. We avoid this additional complexity 

by holding a copy of the whole of the solid mesh on each process, and then computing 

the above contributions without the need for any communication overheads. Clearly 

this comes at the price of some unnecessary work on each process however. 

The parallel MinRES solver that we have implemented does not require the full 

assembly of the matrix blocks A and B: instead communication between neighbouring 

blocks takes place at the steps in the algorithm that require inner products of global 

vectors and a matrix-vector product to be computed. This communication is 

facilitated within PARAMESH through the use of guard cells that surround each 

block. A further enhancement of the solver is the use of a preconditioner to improve 

the convergence of the MinRES solver. This is based upon an incomplete Cholesky 

decomposition (with zero fill-in) of the following block diagonal matrix (where Mp is 

the mass matrix for the pressure space): 

(
𝑀/𝑑𝑡 + 𝐾 0

0 𝑀𝑝/𝑑𝑡
) 

For the parallel implementation we omit the connections between each subdomain 

when computing this incomplete decomposition. Hence the effectiveness of the 

parallel preconditioner is expected to deteriorate as the number of parallel 

processes/subdomains is increased. 

 

3  Results 
 

For this short paper we focus on one representative numerical example in 2D: 

computing the transport and deformation of a soft solid disc in a lid-driven cavity 

flow, [6]. The overall domain is (0,1) x (0,1), with Dirichlet conditions imposed on 

the velocity field throughout the boundary: on three of the four sides the velocity is 

zero, whilst on the top boundary (the driving lid) it is (0,1)T. Initially, a round stress-

free disc of radius 0.2 is centred at (0.6,0.5), and the simulation proceeds on a 128 x 

128 global mesh (with the solid represented by a mesh of 31163 triangles) using a 

time step of 0.01. 

Figure 1 shows snapshots of the solution at four different times, 0.5 (shortly after 

the disc begins to deform), 2.0, 4.0 and 6.0, which match those computed by our 

sequential code in [1] (using the same material parameters cited therein). There is 

clearly very large deformation in the solid, which has been captured effectively by 

the solver. The parallel performance for this example is illustrated in Table 1. All 

simulations were carried out on Taiwania, a supercomputer having a memory of 3.4 

petabytes and delivering over 1.33 quadrillion flop/s of theoretical peak performance. 

The system has 630 compute nodes based on 40 core Intel Xeon Gold 6148 processors 

running at 2.4 GHz. By using our parallel implementation we are able to reduce the 

run time for a typical simulation from ~65 hours (for 800 time steps) to under 90 

minutes. 

Although there is insufficient space to include full results here, when we solve a 

corresponding problem in 3D even greater speed-ups are possible: reducing a 

sequential simulation from over 13 days to approximately 3 hours on 512 cores. As 
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will be discussed further in the next section, there are two main contributory factors 

to the degradation in the strong scaling as the number of processors is increased. 

 

 
Figure 1: Simulation results showing the deformed disc at t=0.5 (top left), 2.0 (top 

right), 4.0 (bottom left) and 6.0 (bottom right). 

 

 

For the final 100 time steps Serial P=4 P=16 P=64 P=256 

Wall clock time (minutes) 490 148 48 23 11 

Speed-up 1 3.3 10.2 21.3 44.5 

Average MinRES iterations per step 20.3 24.2 27.5 29.8 31.1 

Table 1: Parallel performance for the test case consisting of a 2D deforming solid in 

a lid-driven cavity flow. 

 
 

4  Conclusions and Contributions 
 

In this work we have developed and tested the first parallel implementation of the 

One-field fictitious domain method, for solving general fluid-structure interaction 

(FSI) problems. This method has been shown to have desirable stability properties, 

[7], and to be highly effective in addressing a wide range of FSI applications, [1,8]. 

However, like other monolithic approaches to FSI problems (e.g. [9,10]), this FD 

method incurs a large computational cost at each implicit time step, particularly for 
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the diffusion part which requires the solution of a large sparse saddle-point system. 

We have developed a parallel implementation of this solver which is based upon 

partial assembly of the relevant finite element matrices (independently assembled on 

each subdomain), a parallel preconditioner, and a parallel MinRES implementation. 

The strong scaling on a 2D test problem is shown to yield a speed-up of 44.5 on 

256 cores, thus reducing run times of two days to little more than an hour. 

Nevertheless, the efficiency does deteriorate notably as the number of processes, P, 

increases. One contribution to this is the fact that the incomplete factorization that is 

used as a preconditioner becomes more and more sparse as P grows (since, to avoid 

additional communications, we undertake the factorization process independently on 

each subdomain). In the case were P=256 this leads to more than a 50% increase in 

the number of MinRES iterations required at each time step: hence the speedup per 

iteration is in fact equal to 68.2 on 256 cores. The second major contributor to loss of 

efficiency with growing P is the decision to store a copy of the solid mesh on each 

process. This saves a large amount of searching and bookkeeping in order to identify 

which subdomains the triangulation intersects, and is also helpful with load-

balancing, however it does impose a fixed overhead per processor. Consequently, by 

simply application of Amdahl’s law, this places a clear limit on the degree of 

parallelization that will be possible for a problem of fixed size. 

In conclusion, we have developed a new parallel implementation of a recently 

proposed algorithm for general FSI problems. For fixed problem sizes it has been 

demonstrated to allow speedups of close to two orders of magnitude on up to 512 

cores. Its greatest potential however comes through weak scaling, where increasing 

the problem size (e.g. the finite element mesh resolution) in proportion to the number 

of cores is likely to show enhanced parallel efficiency. 
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