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Abstract

This paper presents a novel approach to developing refined structural theories for
finite element models. The proposed methodology stems from the synergistic use of
various methods. First, refined structural theories are built using the Carrera Unified
Formulation, and 2D finite elements are used. Each element can be assigned a
different structural theory through the Node-Dependent Kinematics approach. The
axiomatic/asymptotic method is used to evaluate the accuracy of each structural
theory distribution over a numerical mesh. Finally, neural networks are employed to
obtain surrogate models, find optimal distributions of theories, and minimize
computational costs. The numerical results consider free vibrations of composite
shells with various stacking sequences and thickness ratios. Such input parameters
are included as features of the surrogate models to avoid lengthy finite element
simulations. The use of the proposed methodology provides guidelines on the proper
modelling by indicating the areas of the structure in which refined models are most
needed. Furthermore, the adoption of neural networks leads to significant reductions
in computational overheads.
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1 Introduction

The development of refined structural theories to improve the accuracy and
efficiency of finite elements (FE) has met growing interest over the last decades [1].



The aim is to use 1D or 2D models with advanced kinematics to avoid 3D FE.
Among the others, the Carrera Unified Formulation (CUF) has emerged as a
versatile approach to build any-order theory for various structural problems [2, 3]. In
CUF, governing equations and FE matrices are obtained using index notations
allowing expansion functions for the unknown variables. Within CUF, one of the
latest developments is the Node-Dependent Kinematics (NDK) [4] to build models
in which the structural theory can vary pointwise. In other words, considering an FE
model, each node can have a different structural theory. The use of NDK leads to
higher efficiency as refined theories are used only where necessary.

The choice of the most appropriate model to adopt for a given problem can be made
through the Axiomatic/Asymptotic Method (AAM), a method to evaluate the
influence of generalized variables and build best theories and models [5]. Moreover,
the AAM provides sensitivity analyses concerning problem attributes: thickness
ratio, material properties and stacking sequence, and boundary and load conditions.
However, to obtain optimal distributions of structural theories, many trial models are
required and, thus, high computational costs. This paper presents an alternative
approach to reduce such overheads based on supervised learning techniques. Neural
networks (NN) [6], lately, have seen their employment increase enormously in many
fields, including structural analysis [7, 8], thanks to their accuracy and
computational efficiency. NN are used as surrogate models to substitute FE models
and obtain structural responses. The combined use of CUF, AAM, NDK, and Neural
Networks (NN) is a promising approach to build surrogate models that can provide
information on the structural theory and finite element discretization for a given
problem [9, 10].

2  Methods

CUF introduces a formalism to derive the governing equations and FE matrices
hierarchically and independently of the type and order of the theory. In a 2D case,
the displacement field (u) is

u(x,y,z) = Ni(x, y) Fr(2)ui(2)

(1)
where F, is the expansion along the thickness direction and N;(x,y) is the shape
function. While "i" is the standard index for nodes, "t" is an index for the
generalized variables or expansion terms. A third-order model, for instance, has t =

1,4 and the following displacement field:

Uy = Uyq + ZUyy + Z2%Us3 + 23Uy,

Uy = Uyy + ZUy, + 22Uz + 23Uy,

U, = Uy + ZUyp + Z%Uys + 25Uy,
)
Using the Principle of Virtual Displacements, the stiffness matrix components can
be obtained in a unified manner by using a 3X3 nucleus. For the sake of brevity, the
nucleus components are not reported here but can be found in [3]. An NDK model
has structural models like Eq. 2 assigned to each node independently. In other
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words, one node can have a third-order model and the following one a second-order,
for instance. In this paper, NN are trained with sets of nodal distributions. Two
structural theories were considered: the First-Order Shear Deformation Theory
(FSDT) and a complete fourth-order, equivalent single-layer (N=4). After training,
NN can provide the structure's natural frequencies for a given distribution of
structural theories and thickness ratio. The machine learning technique employed
consisted of a convolutional neural network (CNN). The input was built by encoding
the mesh distribution into a 16-bit array, then reshaped as a 4-by-4 matrix to
correctly identify the position of each 2D element above the reference

plane. A multi-channel input was later developed to consider the thickness, the
stacking sequence, and the boundary conditions. The network's architecture includes
an iput layer, several hidden convolutional layers paired with pooling ones,
followed by a dense and an output layer.

3 Results

The results have been obtained considering a relatively thick plate (a/h = 10), with
the top and bottom edges clamped and the lateral ones free and stacking sequence
90/0. Figure 2 shows the best spatial distributions for different amounts of FSDT
and N=4 elements. The first figure, for instance, shows the optima distribution of 4
FSDT; in other words, the locations in which we can imsert 4 FSDT and obtain the
best accuracy in calculating the first ten natural frequencies. Such distributions
indicate the areas of the structure in which the higher-order models are most needed.
In this case, the clamped edges are the areas in which the fourth-order models are
required. The NN obtained these results after training with a given set of samples.

4FSDT, 12 N=4,E= 8FSDT,8N=4,E= 12 FSDT,4N=4,E =
1.51% 3.24% 5.29%

Figure 1: Element-Wise distributions of structural theories and accuracies over a
4X4 mesh, 90/0, a/h = 10, clamped-free

A second set is considered a simply-supported structure with a/h = 50 and stacking
sequence 0/90/0. The results are shown in Figure 2 and highlight the strong
problem-dependency of the optima mesh distribution.



4FSDT, 12 N=4,E= 8FSDT,8N=4,E = 12FSDT,4N=4,E =
1.82% 3.51% 5.26%

Figure 2: Element-Wise distributions of structural theories and accuracies over a
4X4 mesh, 0/90/0, a/h = 50, simply-supported

4 Conclusions

This paper presents numerical examples obtained using surrogate models based on
neural networks in place of FE analyses to build optimized structural models for the
analysis of composite structures. The Node-Dependent Kinematics capabilities of
the Carrera Unified Formulation were exploited to build FE models with structural
theories varying node-wise. Structural dynamics problems were considered, and
natural frequencies were computed. Traditional FE models were used for
verification purposes and to evaluate the precision of the surrogate models in
detecting natural frequencies. The network employed used structural attributes as
mput parameters, successfully capturing the underlying relationship. The surrogate
model correctly identified the most critical zones of the structure in which refined
structural theories are mandatory. The network also considerably reduced
computational times otherwise traditionally required for this kind of analysis. The
proposed methodology can evaluate the role of refined terms and obtain the best
theories with superior accuracy and computational efficiency.

Furthermore, using machine learning algorithms is promising to obtain indications
on building refined models and FE discretizations. Future developments should
mclude including failure parameters to use surrogate models for evaluating the
damage onset. Then, nonlinear problems should be tackled to exploit the
computational efficiency further, such as progressive failure and damage.
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