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Abstract 
 

Accurately ensuring the quantity of reinforcing bars before concrete pouring is critical 

for quality assurance in reinforced concrete structures. However, on-site rebar 

inspections are still carried out manually and restricted to a small number of sample 

areas, making them time-consuming and potentially unreliable. Consequently, such 

methods fall short in delivering reliable, and comprehensive quality assurance. To 

overcome these limitations, this study proposes a novel method for automatically 

counting rebars from grayscale-converted field images. The binary image in Cartesian 

coordinates is transformed into a polar coordinate system, such that vertical rebars 

appear as concentric circles. Instead of counting peaks from the vertical projection 

profile of rebar pixels in the binary image—as in conventional approaches—this 

method estimates the number of rebars by counting the number of circles. To enable 

accurate estimation of the number of concentric circles, we propose a radial transition 

voting algorithm. This algorithm performs a 360-degree scan from the image center 

and estimates the number of rebars by counting the intensity transitions along the 

radial direction in the binary image. This approach enables robust and fully automated 

rebar counting without the need for threshold tuning or parameter adjustment. 
 

Keywords: automated rebar counting, polar transformation, radial-transition voting, 

image-to-image translation, projection profile, reinforced-concrete inspection. 
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1  Introduction 
 

The structural performance and durability of reinforced concrete structures are highly 

dependent on the accurate on-site installation of reinforcing bars (rebars) according to 

the specified diameters, spacings, and quantities [1]. Current field inspections of rebar 

placement still rely on tape measurements and visual assessments, which are 

conducted over localized areas selectively sampled by inspectors. As a result of the 

limited and selectively inspected areas, this approach lacks the consistency and 

coverage required to ensure overall quality. It is also time-consuming and has been 

criticized for resulting in inconsistent inspection outcomes [2]. Therefore, there is a 

critical need for an automated and vision-based method for counting rebars. Such a 

method should be capable of evaluating the entire placement rapidly and consistently 

prior to concrete pouring. 
 

Among vision-based solutions, peak counting in projection profiles remains an 

actively studied approach. Quek et al. employed a Polynomial-Based Layer 

Separation (PBLS) algorithm to split inductive-scan images into isolated horizontal 

and vertical bar layers; the number of bars in each layer was then obtained by locating 

the peaks in the corresponding one-dimensional projection profiles, although the 

analyst still had to adjust baseline and threshold settings manually [5]. Park et al. 

conducted a toy-scale experiment by photographing a rebar mock-up on a site 

background and stitching the images; after isolating rebar pixels with a Pix2Pix 

model, they derived the rebar count from peaks in the u/v-axis projection profiles, yet 

the peaks still had to be selected manually, so full automation was not achieved [2]. 

Han et al. reconstructed a dense SfM point cloud and projected point density onto an 

X–Y grid to identify spacing peaks; target-point registration, voxel length, and peak 

thresholds all required user input, so spacing and rebar counting were not fully 

automated. [7]. Yuan et al. proposed the SARI algorithm, sliding a 1-D window along 

each axis of a mobile-LiDAR cloud to detect density peaks and compute spacing; the 

window length and scan-axis orientation still had to be set by the operator. Hodge & 

Gattas iteratively sliced a terrestrial-laser point cloud and counted peaks in 2-D 

density histograms to verify cage geometry, yet window size and occlusion-filter 

thresholds required manual adjustment [9]. Wu et al. projected TLS point clouds onto 

principal axes and extracted spacing from histogram peaks; window size, clustering 

radius, and noise thresholds were dataset-specific settings that inspectors had to 

choose, leaving user intervention necessary [10]. Song et al. segmented rebars with 

Rebar-YOLOv8-seg, converted the resulting masks into a 3-D point cloud, and then 

applied PCA projection followed by RANSAC centre-line fitting to compute rebar 

spacing; while the algorithm itself needs no user-tuned thresholds, an operator still 

has to position the camera at an appropriate height and viewing angle, and it also 

demands a sufficiently large, well-labelled training dataset to maintain segmentation 

robustness [11]. 
 

This paper introduces a parameter-free, two-step framework for fully automated rebar 

counting. Step 1 converts an orthogonal rebar grid into a concentric-circle pattern by 

an image-to-polar transformation, so each bar appears as a single circle regardless of 

camera tilt or in-plane rotation. Step 2 runs a Radial-Transition Voting (RTV) 
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algorithm that sweeps 360° and selects the mode of black-to-white transition counts, 

delivering the rebar count automatically. By converting peak counting into circle 

counting and coupling it with RTV, the framework dispenses with the traditional 

projection-peak constraints of axis-alignment dependence, noise/occlusion 

sensitivity, and manual parameter tuning. As a result, it delivers robust, real-time, full-

coverage rebar counting from a single greyscale image. 
 

 
 

 

2  Methodology 
 

2‑1 Grid‑to‑Concentric‑Circle Transformation 
 

Once a full-coverage site mosaic has been produced, the complex background is 

removed and only rebar pixels are retained. Rather than treating this as a classical 

segmentation task, we follow the image-to-image translation strategy of Park et al., a 

Pix2Pix-GAN and an LSGAN, both trained on synthetically rendered rebar scenes, 

map the colour photograph to a binary image in which rebar is black and the 

background white [11]. 
 

The black-pixel coordinates (u, v) are then normalised to [0, 1] along the horizontal 

and vertical dimensions, as expressed in Eq. (1). 
 

𝑢̂ =
𝑢

𝑊−1
 ,          𝑣 =

𝑣

𝑊−1
 (1) 

 

Each normalised point is converted to polar space, where the horizontal position 

becomes the radius and the vertical position the angle. With a one-pixel radial step 

and a minimum radius 𝑑𝑟 and a minimum radius 𝑟𝑚𝑖𝑛= ⌈H/2π⌉, the conversion is 

given in Eq. (2). 
 

𝑟(𝑢) = 𝑟𝑚𝑖𝑛 +  𝑢̂(W − 1)𝑑𝑟 ,   θ(𝑣) = 2𝜋𝑣,     𝑟𝑚𝑖𝑛 = [
𝐻

2𝜋
]  (2) 

 

The polar samples are back-projected onto a square canvas of side 2Rmax + 1 using 

Eq. (3), where Rmax =  𝑟𝑚𝑖𝑛 +  (W − 1)𝑑𝑟 . Thus an orthogonal rebar grid is re-

expressed as 𝑚 concentric circles—one per bar—independent of camera tilt. 
 

𝑥 = 𝑟𝑐𝑜𝑠θ + Rmax,    𝑦 = −𝑟𝑠𝑖𝑛θ + Rmax,    Rmax = 𝑟𝑚𝑖𝑛 + (W − 1)𝑑𝑟 (3) 
 

Finally, a lightweight morphological post-processing step—closing followed by 

optional skeletonisation—bridges small threshold gaps and thins each circle to a stable 

one-pixel contour. Because these operations use fixed, task-independent settings, no 

additional parameters are introduced. By reformulating the peak-counting problem 

into a circle-counting problem in this way, the proposed approach eliminates axis-

alignment, noise/occlusion, and manual-tuning issues that hinder projection-profile 

techniques. 
 
 

 2-2 Radial-Transition Voting (RTV) 
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After the concentric-circle image 𝐼𝑐 has been formed, the number of rebars is obtained 

by a two-step radial-transition voting procedure. 
 

First, a user-selectable set of 𝑁 unit vectors is cast from the image centre. If the 

default value 𝑁=360 is used, the 𝑖-th ray makes an angle of 2𝜋𝑖/𝑁 radians with the 

positive 𝑥-axis, as introduced in Equation (4). 
 

𝜃𝑖 =  
2𝜋𝑖

𝑁
 ,      𝑖 =  0, … , 𝑁 − 1 (4) 

 

Along each ray, the algorithm starts just outside the inner skip band 𝑟𝑚𝑖𝑛 + 𝛿 and 

marches outward to the outer radius Rmax . Whenever a black pixel (rebar) is 

immediately followed by a white pixel (background), one black-to-white transition is 

counted.  The total number of such transitions on the 𝑖-th ray is denoted 𝑇𝑖 and defined 

formally in Equation (5), where 𝐼(𝑟, 𝜃𝑖) returns the binary value of 𝐼𝑐 at polar position 

( r, θ ). 

𝑇𝑖 =  ∑ [𝐼(𝑟, 𝜃𝑖) = 1 ∧ I(r − 1, 𝜃𝑖) =  0]

𝑅𝑚𝑎𝑥

𝑟𝑚𝑖𝑛+𝛿

 (5) 

 

Finally, the histogram of all 𝑇𝑖  values collected from all 𝑁 rays is analysed. The 

mode—i.e. the transition count that occurs most frequently—is selected as the rebar 

number 𝑚. Let 𝒦 ⊂ ℕ0  be the set of candidate counts. Then the rebar number is 

determined by majority voting, where 1(∙) is the indicator function. This process is 

formalized in Equation (6). 
 

𝑚 =  𝑎𝑟𝑔𝑚𝑎𝑥
𝑘∈𝒦

∑ 1(𝑇𝑖 = 𝑘)

𝑁

i=1

 (6) 

 

Because genuine concentric circles generate exactly the same transition count on 

almost every ray, whereas noise and local gaps yield scattered counts, RTV suppresses 

false detections without any user-defined thresholds, bandwidths, or window size. 
 

3  Implementation 
 

This section verifies whether the proposed Cartesian-to-polar transformation 

followed by Radial-Transition Voting (RTV) can count rebars with high precision in 

a fully automated setting while all parameters remain fixed. The validation begins 

with greyscale binary images produced by the image-to-image translation pipeline of 

Park et al. [11]; that network suppresses background noise and converts every rebar 

pixel to black against a white background, eliminating any need for manual 

threshold tuning.  
 

Figure 3-1 presents the two test images, with image (b) obtained by rotating 

image (a) through 90 degrees. Because the counting algorithm focuses on vertical 

reinforcement, rotating the image by 90 degrees makes it possible to count the 

previously horizontal rebars as well. Both images include a slight in-plane tilt and 

small surface blemishes to mimic realistic field conditions.  
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Throughout the study every hyper-parameter is held constant. The polar grid is 

sampled along 360 radial directions at one-degree intervals; the radial step is fixed at 

one pixel, and all pixels within a radius of ten pixels from the centre are excluded to 

suppress centre-finding noise. Morphological closing is implemented as one 

dilation–erosion pair repeated six times. These settings belong intrinsically to the 

method and remained unchanged throughout all experiments. 
 

 

Figure 3-1: Greyscale binary validation images: (a) original orientation; (b) image 

rotated through 90 degrees. 
 

For baseline comparison the same images were processed with the conventional 

projection-profile technique, and the resulting histograms are shown in Figure 3-2. 

The profiles expose two chronic weaknesses. First, when glare or speckle noise 

breaks a bar contour, the single intensity peak that should represent one bar splits 

into several smaller peaks, so reliable counting becomes impossible without human 

supervision. Second, peak height and width vary with camera distance and image 

resolution, forcing analysts to recalibrate smoothing strength and threshold values 

for every project. Because of these limitations, projection profiles cannot deliver 

fully unattended rebar counts.  
 

 

Figure 3-2: Projection-profile histograms obtained from the images in Figure 3-1; 

the multiplicity and irregularity of peaks illustrate the method’s sensitivity to noise, 

tilt and parameter choices. 
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The proposed pipeline avoids these pitfalls by mapping each Cartesian pixel 

(𝑢, 𝑣) to polar coordinates ( r, θ ) = (𝑢, 2π𝑣). After transformation every vertical bar 

becomes a single continuous concentric circle, whereas horizontal bars appear as 

radial lines and therefore do not interfere with circle counting. RTV then emits 360 

uniformly spaced rays, discards the central ten-pixel core, and records the number of 

black-to-white transitions along each ray. The statistical mode of the 360 transition 

counts is taken as the final estimate of the number of rebars; because spurious 

transitions caused by blemishes or partial occlusions affect only a few rays, the 

modal vote is robust to noise.  
 

Figure 3-3 visualises the transformed images. In Figure 3-3a nine distinct circles 

correspond exactly to the nine vertical bars in the original view; Figure 3-3b shows 

thirteen circles that match the thirteen bars now oriented vertically after rotation. 

The circles remain sharply separated despite slight bar inclinations and scattered 

noise, confirming the resilience of the polar representation. 

 
 

 
 

Figure 3-3: Results of the Cartesian-to-polar transformation: (a) nine concentric 

circles derived from Figure 3-1a; (b) thirteen concentric circles derived from Figure 

3-1b. 
 

 

Quantitative results in Table 3-1 demonstrate that RTV reproduces the ground-

truth counts without error for both images. Moreover, Table 3-2 shows that the 

modal transition count attracts more than one-third of all rays—122 out of 360 in the 

first image and 153 in the second—while every alternative receives far fewer votes. 

Such a decisive majority indicates that random noise and minor contour breaks exert 

negligible influence on the final decision.  
 

In summary, by reformulating rebar counting as circle detection and replacing hand-

tuned thresholds with a data-driven voting scheme, the Cartesian-to-polar 

transformation combined with RTV attains 100 % accuracy under realistic 

photographic conditions using a single, immutable parameter set, thereby 
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overcoming the obstacles that prevent full automation in projection-profile 

approaches. 
 

Image Ground-truth 

rebars 

RTV estimate Modal votes (out of 

360) 

Coverage (%) 

Original 

orientation  

9 9 122 34 

90° rotated  13 13 153 43 

Table 3-1: Accuracy of RTV-based rebar counting for the two validation images. 
 

 

Rank Transition count Rays (votes) Vote Share (%) 

1 9 122 33.9 

2 10 61 16.9 

3 0 25 6.9 

4 1 24 6.7 

5 8 21 5.8 

Table 3-2a: Five most common radial transition counts recorded by RTV; (a) 

Original orientation (Fig. 3-3a) 
 

 

Rank Transition count Rays (votes) Vote Share (%) 

1 13 153 42.5 

2 12 34 9.4 

3 11 24 6.7 

4 1 24 6.7 

5 2 16 4.4 

Table 3-2b: Five most common radial transition counts recorded by RTV; 90° 

rotated (Fig. 3-3b) 
 

5  Conclusions  
 

The proposed Cartesian-to-polar transformation pipeline combined with Radial-

Transition Voting (RTV) removes the long-standing obstacles to full automation in 

rebar inspection—mandatory axis alignment and manual threshold adjustment. A 

proof-of-concept evaluation used two challenging images, one in its original 

orientation and the same frame rotated 90 degrees, to test the method with a single 

fixed parameter set. In both cases the pipeline exactly matched the ground-truth counts 

and secured a dominant vote share greater than one third of all 360 rays. These 

findings show that the system achieves push-button accuracy where classical 

projection-profile techniques break down. Future research will assemble a large-scale 

public dataset covering diverse lighting conditions, camera angles, and bar spacings 



8 

 

to provide rigorous benchmarks and uncover edge cases. An equally important 

direction is to extend the current two-dimensional approach so that it can count rebars 

in multi-layer cages and fully three-dimensional arrangements encountered on actual 

sites. Together, these efforts aim to create a universally applicable, high-confidence 

tool that delivers real-time automated rebar auditing across diverse construction 

scenarios. 
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