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Abstract 
 

Previous studies on construction site hazard identification have primarily employed 

machine learning techniques to predict potential accident scenarios. However, two 

major limitations persist: (1) these models often rely on manual input of attribute 

parameters, reducing their applicability in real-time and automated settings; and (2) 

most approaches focus solely on hazard prediction without providing specific, 

regulation-compliant preventive strategies. To address these gaps, this study proposes 

an automated framework that integrates computer vision with Retrieval-Augmented 

Generation (RAG) for hazard identification and response plan generation. Specifically, 

hazard types are detected from construction site CCTV footage using computer vision, 

while large language models (LLMs) are employed to retrieve relevant construction 

safety regulations and generate corresponding mitigation measures. Empirical 

validation was conducted using a dataset of 2,490 hazard images to test the proposed 

model. Results demonstrate that the LLM-RAG framework can generate feasible, 

regulation-aligned preventive recommendations. The model significantly enhances 

the automation and intelligence of hazard recognition and mitigation planning, 

offering a novel approach to advancing smart construction safety management. 
 

Keywords: construction safety, hazard prevention, pre-trained models, image 

recognition, RAG, LLM. 
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1  Introduction 
 

The construction industry, characterized by its open and dynamic work environments, 

has long been recognized as one of the most hazardous sectors globally [1]. According 

to the International Labour Organization (ILO), although construction employs only 

7% of the global workforce, it accounts for 30–40% of all occupational fatalities [2]. 

Even in highly developed regions such as the European Union, the construction sector 

is responsible for approximately 20% of annual work-related deaths across all 

industries[3]. These statistics underscore the critical importance of enhancing 

occupational safety in construction. 
 

A fundamental step in reducing occupational accidents is the prevention of workers’ 

exposure to hazardous conditions [4]. Effective hazard prevention depends on the 

timely and accurate identification of potential hazards [5]. When hazards are not 

promptly recognized, they are unlikely to be addressed adequately, thereby increasing 

the risk of on-site accidents and injuries [6]. Consequently, hazard identification is 

widely regarded as a cornerstone of accident prevention strategies and an essential 

prerequisite for ensuring construction site safety. 

However, previous studies have demonstrated the limitations of relying solely on 

workers’ personal judgment to identify hazards. In the United States, it was found that 

over 40% of hazards were not recognized by workers [6]. Similar findings have been 

reported in Australia (57% unrecognized) [7]and the United Kingdom (33%) [8], with 

comparable trends observed across Asia, the Middle East, and other regions [9]. These 

findings suggest that the inability of workers to accurately identify latent hazards and 

take pre-emptive action is a major contributing factor to the persistently high accident 

and fatality rates in construction.  

Several challenges have been identified in the literature as key obstacles to 

effective hazard recognition by construction workers: (1) Complex and dynamic site 

environments – construction sites are highly information-dense settings with changing 

layouts, multiple work phases, varied materials and equipment, and fluctuating 

environmental conditions, all of which hinder workers’ ability to focus and identify 

specific hazards[10]; (2) Visual interference in imagery – site imagery often contains 

cluttered backgrounds, inconsistent lighting, and overlapping human activity, 

reducing observers’ attention and accuracy in hazard recognition [11] (3) Cognitive 

load and individual differences – variations in workers’ hazard perception abilities 

may limit the effectiveness of visual recognition tasks, particularly under high 

workload conditions [11]; (4) Subtlety and concealment of hazards – certain hazards 

(e.g., electrical leakage, structural defects) are not readily visible and require 

specialized knowledge or experience to detect [12][13]. 

In summary, the high complexity of construction environments and the cognitive 

limitations of human observers result in a significant proportion (33%–57%) of 

hazards being overlooked, which constitutes a key root cause of accidents in the 

construction sector [6][7][8][9]. 

Previous research has employed various machine learning algorithms—including 

Support Vector Machines (SVM) [14], Linear Regression (LR) [15], Random Forest 

(RF) [16], and Naive Bayes (NB) [17]—to predict construction-related accidents. 
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However, these models typically require manual input of hazard attribute data and are 

not capable of automatic hazard identification. More recently, some studies have 

leveraged computer vision and construction site CCTV footage to collect hazard data 

[18], but few have explored the integration of computer vision for automated hazard 

detection. Furthermore, while prior works have made progress in predicting potential 

accident types, they often fall short of proposing concrete and regulation-compliant 

preventive measures. 

To address these limitations, this study proposes an integrated framework that 

combines computer vision-based hazard detection with Retrieval-Augmented 

Generation (RAG)[19] powered by large language models (LLMs)[20]. This 

framework enables automatic hazard recognition and generation of compliant 

preventive measures using CCTV surveillance footage from construction sites. By 

leveraging on-site cameras and local processing units, the proposed system facilitates 

24/7 real-time monitoring, hazard detection, and safety response generation—offering 

a novel and effective approach to advancing construction site safety management. 
 

2  Methods 
 

The proposed model for identification and prevention of construction site hazards is 

depicted in Figure 1. There are two modules in the proposed model: (1) Deep 

Learning-based Hazard Prediction Module (DL-HPM) for identifying the 

construction hazard type; (2) Large Language Model-based Retrieval Augmented 

Generation Module (LLM-RAG) for generating the hazard prevention measures. 

 

Figure 1: Proposed model for construction hazard identification and prevention. 

 

2.1 Deep Learning-based Hazard Prediction Module (DL-HPM) 

DL-HPM comprises of the following components: (1) The CCTV site safety 

monitoring system—providing 24/7 real-time safety monitoring footages of 

construction site; (2) LLM API—the Application Programming Interface (API) of 

large language model (LLM), ChatGPT o4 mini was adopted for this research; (3) 

Deep Neural Networks—a Convolutional Neural Newtok (CNN)-based deep network 

is adopted for pattern recognition of construction hazard on-site; (4) the most likely 

hazard type is predicted by the Deep Neural Networks as the outcome of DL-HPM. 
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2.2 Large Language Model-based Retrieval Augmented Generation Module 

(LLM-RAG) 

LLM-RAG comprises of the following components: (1) Query template—providing 

a template of query to generate a description of request to query the hazard prevention 

measures for the hazard type predicted by DL-HPM; (2) External Knowledge—the 

domain-specific construction safety laws, standards, SPECs, and regulations 

published by the Occupational Safety and Health Administration, Taiwan (TOSHA); 

(3) LLM-API—the ChatGPT 4o mini is adopted to convert both external knowledge 

base and the hazard prevention query into vector embeddings; (4) LLM generation—

ChatGPT 4o mini is adopted again to generate the solution for the query; (5) Hazard 

prevention report—a report of hazard prevention measures based on the construction 

safety laws, standards, SPECs, and regulations of TOSHA is generated for the user. 

 

2.3 Performance Metrics 

In order to evaluate the performance of the proposed methods, two sets of metrics 

were adopted in this research to evaluate the outcomes of the proposed model.  

 

2.3.1 Performance Evaluation Metrics of Visual Hazard Recognition 

The first set of metrics are frequently used for pattern recognitions, comprising 

Macro-Precision, Macro-Reall, Macro-F1 score, and Accuracy [23]: 

𝑀𝑎𝑐𝑟𝑜 − 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
1

C
∑

𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑃𝑖

𝐶

𝑖=0        (1) 

where TPi and FPi denote the true positives and false positives for class i, and C is 

the number of classes. 

𝑀𝑎𝑐𝑟𝑜 − 𝑅𝑒𝑐𝑎𝑙𝑙 =
1

C
∑

𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑁𝑖

𝐶

𝑖=0         (2) 

where TPi denotes the true positives, and FNi denotes false negatives for class i, 

and C is the number of classes. 

𝑀𝑎𝑐𝑟𝑜 − 𝐹1 =
𝑀𝑎𝑐𝑟𝑜−𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑀𝑎𝑐𝑟𝑜−𝑅𝑒𝑐𝑎𝑙𝑙

𝑀𝑎𝑐𝑟𝑜−𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑀𝑎𝑐𝑟𝑜−𝑅𝑒𝑐𝑎𝑙𝑙
      (3) 

where Macro-Precision and Macro-Recall are defined in Eq. (1) and Eq. (2), 

respectively.. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑ 𝑇𝑃𝑖

𝐶
𝑖=1

∑ (𝑇𝑃𝑖+𝐹𝑃𝑖+𝐹𝑁+𝑇𝑁𝑖)𝐶
𝑖=1

        (4) 

where TPi, FPi,denote the true positives and false positives for class i; FNi, 

TNi,denote the false negatives and true negatives; and C is the number of classes. 

 

2.3.2 Performance Evaluation Metrics of Hazard Prevention Measures 

The second set of performance metrics evaluates the correctness of the prevention 

measures suggested by the proposed model. Established Natural Language Processing 

(NLP) evaluation metrics [24] include BLEU (n-gram precision against references), 

ROUGE (n-gram overlap/recall against references), CIDEr (similarity based on multi-

reference consensus), and SPICE (semantic proposition comparison against 
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references). However, these standard NLP metrics may not be suitable for evaluating 

the generated hazard prevention measures.  

Since the proposed measures are derived and often paraphrased from TOSHA’s 

construction safety laws, regulations, standards, and specifications, there are no 

absolute or definitive “correct” references available for direct comparison. 

Consequently, applying conventional evaluation metrics may lead to misleading 

conclusions. A more suitable approach is to assess the proposed prevention measures 

through expert evaluation by construction safety professionals who are certified by 

TOSHA and possess practical knowledge of the relevant regulatory documents. In this 

context, a Likert 5-point scale is adopted, and evaluations are conducted by an 

experienced domain expert certified in occupational safety and health (OSH) by 

TOSHA. Three key performance indicators are assessed: (1) Completeness of Hazard 

Description, (2) Appropriateness of the Recommended Prevention Measures, and (3) 

Correctness of the Source Documents. Each indicator is calculated using the following 

equation : 

𝑀𝑒𝑎𝑛 𝑆𝑐𝑜𝑟𝑒 =
∑ 𝑆𝑜𝑟𝑒𝑖

𝑁
𝑖=1

𝑁
          (5) 

where Mean Score can be ‘Completeness of Hazard Description’, ‘Appropriateness 

of Proposed Prevention Measures’, or ‘Correctness of Referred Regulations’ for the 

ith case; and N is the number of cases. 

 

3  Results 
 

The proposed model has been tested with the CCTV footages collected from a real-

world construction project [26] to recognize hazard types and to generated feasible 

prevention measures.  

 

3.1 Performance Evaluation of Visual Hazard Recognition 

For visual hazard recognition, we adopted a transfer learning approach utilizing pre-

trained deep learning image recognition models: GoogleNet, Inception-v3, ResNet-

101, and DenseNet-201. The model testing platform consisted of Matlab 2024b with 

the Computer Vision Toolbox, running on the following hardware: (1) CPU: Intel 

Xeon E5-2620v4 @ 2.10GHz; (2) RAM: 40GB at 2400MHz; (3) OS: Microsoft 

Windows 10; and (4) GPU: NVIDIA Quadro P2000 (5GB). We employed the 

Matlab Deep Network Designer App to build the pre-trained models. 

A set of 2,490 pre-labelled hazard images captured from the CCTV footages 

collected from the case project were used for model testing, where 80% (1,992 images) 

of the datasets were used for training and the rest 20% (498 images) for testing. Then, 

the four performance metrics described in Subsection 2.1 are used to evaluate the 

performance of the five pretrained models. The results are reported in Table 1.  

Table 1 indicates that the visual hazard recognition performance for construction 

hazards is generally lower than that reported for other visual recognition tasks in the 

literature. This underperformance may stem from three primary factors: (1) the 

inherent complexity of construction scenes, which poses a challenge for common pre-

trained models; (2) the small size (2242243) and low resolution of images captured 
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from CCTV footage, potentially insufficient for large pre-trained models; and (3) the 

presence of compound hazards within the same scene, meaning a single image can 

depict multiple hazard types (as shown in the examples of Table 2). 

 

 
Pre-train Model Macro-Precision Macro-Recall Macro-F1 Accuracy 

GoogleNet 0.6256 0.5753 0.5815 0.7664 

Inception-v3 0.7010 0.5362 0.5622 0.7848 

ResNet-101 0.7217 0.6446 0.6657 0.8189 

Dese Net-201 0.7150 0.6254 0.6502 0.8084 

Table 1: Visual recognition performance of pre-trained models. 

 

 

No. Image Hazard description Hazard type 

1 

 

Incorrectly used safety harnesses on scaffolding 

expose top-floor formwork workers to fall hazards 

(H01). 

Fall & rolling 

(H01). 

2 

 

Materials piled on scaffolding walkways during top-

floor formwork assembly create a tripping risk (H02). 
Tripping (H02). 

Table 2: Examples of compound hazards with similar scenes. 

 

3.2 Performance Evaluation Metrics of Hazard Prevention Measures 

 

3.2.1 External Knowledge Base for Construction Hazard Prevention 

The construction safety regulations adopted for LLM-RAG modules including the 10 

documents published by TOSHA of Taiwan, list as follows (The full articles and 

contents of these documents are available on the TOSHA website: 

https://www.osha.gov.tw/48110/48713/normalnodelist.): 

1. Occupational Safety and Health Act (OSHA,職業安全衛生法 , amended on 

2019.05.05)  

2. Enforcement Rules of the Occupational Safety and Health Act (EROSHA,職業安

全衛生法施行細則, amended on 2020.02.27) 

3. Occupational Safety and Health Management Regulations (OSHMR,職業安全衛

生管理辦法, amended on 2016.02.19) 

4. Occupational Safety and Health Facility Regulations (OSHFR,職業安全衛生設

施規則, amended on 2020.03.02) 

5. Regulations for Occupational Safety and Health Labeling (ROSHL,職業安全衛

生標示設置準則, amended on 2014.07.02) 
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6. Notice for Labor Inspection Agencies Handling Category D Hazardous Work 

Environment Reviews(NLAHCD,勞動檢查機構辦理丁類危險性工作場所審

查注意事項, revised Sept. 21, 2025) 

7. Construction Safety and Health Facilities Standards (CSHFS,營造安全衛生設施

標準, revised on June 26, 2014) 

8. Labor Inspection Act (LIA,勞動檢查法, amended on 2015.02.04) 

9. Standards for Determining Whether Workers are in Immediate Danger as 

Prescribed in Article 28 of the Labor Inspection Act (SDWID,勞動檢查法第二

十八條所定勞工有立即發生危險之虞認定標準, revised on June 10, 2005) 

10. Key Points for Strengthening Labor Safety and Health Management in Public 

Works (KPSLSH,加強公共工程勞工安全衛生管理作業要 , revised on 

December 2, 2009) 

 

3.2.2 Calling ChatGPT 4o mini Model via API for Safety Hazard Prevention 

In this research, we implemented the LLM-RAG model using ChatGPT-4o mini. The 

external knowledge base comprised the 10 TOSHA documents detailed in the 

preceding subsection. We developed an API program to interface with ChatGPT-4o 

mini. There two reason for choosing ChatGPT-4o mini for implementation: (1) 

reasoning quality—GPT-4o mini outperformed other small models on MMLU tasks; 

(2) cost-effectiveness—GPT-4o mini costs only 3% of GPT-4o, or 1/3 of GPT-3.5 

Turbo. 

Figure 3: Python code (partial) to call ChatGPT-4o-mini. 

import openai 

 

# {hazard_type} was obtained from the pretrained DL model 

 

# 1. Initialize the API key 

openai.api_key = "API_KEY" 

 

def get_hazard_prevention_measures(hazard_type: str) -> str: 

    """ 

# Query ChatGPT-4o-mini for prevention measures given a recognized {hazard_type}. 

    """ 

    # 2. Fill the template 

    prompt = ( 

        f"You are a construction safety expert. " 

        f"Based on the provided documents, " 

        f"please list specific prevention measures for the hazard: “{hazard_type}.”" 

    ) 

     

    # 3. Call the ChatCompletion API 

    response = openai.ChatCompletion.create( 

        model="gpt-4o-mini", 

        messages=[ 

            {"role": "system", 

             "content": "You have full access to the TOSHA construction safety laws, regulations, standards, 

and specs."}, 

            {"role": "user", "content": prompt} 

        ], 

        temperature=0.0, 

        max_tokens=300 

    ) 
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3.2.3 Examples of Responses Generated by LLM-RAG 

Table 3 presents four examples of responses generated by the ChatGPT-4o-mini API, 

detailing hazard prevention measures based on TOSHA safety regulations for a 

specified hazard type. 
 

N

o. 
Image 

Hazard 

Description 
Precommended revention Measures 

Source 

Document 

1 

 

Hazard: Fall from 

height 

Scenario: Gap 

between scaffold 

planks and wall, no 

safety net. 

1. Seal gaps with rigid covers ≤3 cm 

2. Install guardrails ≥90 cm + mid‐rails 35–55 cm 

+ toe‐boards ≥10 cm 

3. Hang CNS 14252 safety nets ≤7 m drop, 2.5–4 

m extension 

4. Use full‐body harness per CNS 7534/CNS 

14253 when nets/rails absent 

1. CSHFS #21 

2. CSHFS #20 

3. CSHFS #22 

4. LIA #28 

2 

 

Hazard: Fall to lower 

level 

Scenario: Worker 

perched on rebar 

cage edge without 

platform or 

guardrail. 

1. Install scaffold planks or secure platforms 

across rebar cages  

2. Erect guardrails ≥90 cm high + mid-rails + toe-

boards ≥10 cm on all edges 

3. Cap or bend exposed rebar ends and cover with 

protective caps  

4. Use full-body harness per CNS 7534/CNS 

14253 when working near open edges  

1. CSHFS #56-2 

2. CSHFS #20 

3. CSHFS #67 

4. LIA #28 

 

3 

 

Hazard: Fall 

Scenario: Workers 

stand on unstable 

planks around rebar 

column, no 

guardrails or proper 

platform. 

1. Install stable platform/scaffold planks spanning 

full bay 

2. Erect guardrails ≥90 cm + mid-rails + toe-

boards ≥10 cm on edges 

3. Cap/bend exposed rebar + use protective caps 

4. Wear full-body harness anchored to certified 

lifeline if edges unprotected 

1. CSHFS #56-2 

2. CSHFS #20 

3. CSHFS #67 

4. LIA #28 

 

4 

 

Hazard: Fall from 

height 

Scenario: Worker 

perched on narrow 

beam without 

platform or harness. 

1. Install full-width scaffold planks or work 

platform 

2. Erect guardrails ≥ 90 cm high + mid-rails + toe-

boards ≥ 10 cm on all open edges 

3. Require full-body harness anchored to certified 

lifeline when platform or rails absent 

1. CSHFS #56-2 

2. CSHFS #20 

3. LIA #28 

 

Table 3: Examples of generated responses from ChatGPT 4o mini. 
 

 
 

3.2.3 Performance Evaluation 

To evaluate the effectiveness of the hazard prevention measures recommended by the 

LLM-RAG model, we applied the performance metrics defined in Subsection 2.3.2—

using a five-point Likert scale—to a set of 30 randomly selected hazard images. The 
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results are summarized in Table 4. Among the three metrics assessed, Completeness 

of Hazard Descriptions achieved the highest mean score and approval rate. 
 

Metric Hazard Description Prevention Measures Source Documents 

Mean score 4.2 3.7 3.2 

Table 4: Performance metrics of the recommended prevention measures. 
 

The following key observations emerged from the test cases: 

⚫ The single most influential factor was the accuracy of hazard identification: when 

the model misclassified the hazard type, it recommended inappropriate 

prevention measures and cited incorrect source documents. Currently, these 

misclassifications stem from the limited visual hazard recognition capabilities of 

the pre-trained model—improving this is a primary task for enhancing the 

proposed system. 

⚫ Dataset imbalance significantly impacted hazard classification: many images 

were incorrectly labeled as “H01–Fall & Rolling.” Although this hazard is the 

most common on site, its overrepresentation skewed the model’s performance. 

Future work should focus on collecting more images of other hazard types. 

⚫ Hallucination issues were observed in sourcing: the LLM-RAG model 

sometimes cited incorrect documents even when its prevention measures were 

accurate. Addressing these hallucinations is essential to improve the model. 

 

4  Conclusions and Contributions 
 

This study represents one of the earliest efforts to integrate a Retrieval-Augmented 

Generation (RAG)–enhanced large language model (LLM) with deep learning (DL)–

based visual hazard recognition for the automated generation of construction hazard 

prevention measures. Our results demonstrate that the proposed LLM-RAG 

framework can automatically generate practical, site-specific safety solutions. Such a 

tool offers construction managers and safety personnel significant benefits, addressing 

an industry that consistently records the highest number of workplace fatalities. By 

coupling the LLM-RAG model with pretrained DL detectors and CCTV monitoring, 

it is possible to achieve continuous, around-the-clock hazard surveillance. When 

paired with a real-time alert system, this approach supports proactive safety 

management, bringing us closer to the goal of identifying and eliminating hazards 

before they occur. 

Although the results have demonstrated the feasibility of the proposed model, 

further efforts are necessary to enable its practical implementation. Future research 

should focus on the following directions: 

⚫ Enhancing visual hazard recognition performance — While image recognition 

technologies have advanced significantly, applying them to complex 

construction scenarios such as hazard detection remains challenging. In this 

study, four pre-trained deep learning models (GoogleNet, Inception-v3, ResNet-

101, and DenseNet-201) were used, with accuracy rates plateauing around 80%. 

Future research should address issues such as dataset imbalance and the 

identification of compound hazards to improve recognition performance. 
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⚫ Reducing hallucination of LLM-RAG model—it was found in this research that 

hallucination effects was serious in retrieving related source safety regulations. 

This will reduce the credibility of the generated solution significantly. 

Techniques such as hybrid retrieval, citation-aware generation, Chain-of-

reasoning grounding, etc. can be adopted in reducing hallucination effects. 

⚫ Automated system to implement the proposed model in practical construction 

safety management including the real-time safety warning system to inform 

hazard information the workers themselves and the site safety managers, and a 

historical lesson-learned system that accumulates hazard prevention experiences 

are also desirable in developing future proactive safety management strategies. 
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