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Abstract

The paper is aimed to explore influence of the fluid-structure interaction (FSI) in soft
porous structure on the flow and tansport of a species agent to the solid while taking
into account the interface permeability depending on the wall shear stress due to the
flow. The modelling is based on the two-scale homogenization of the coupled FSI
and the advection-diffusion problems. The solid skeleton is composed of rigid frame
supporting a very compliant elastic, or poroelastic structure. The solid elasticity pro-
gressively less stiff with decreasing microstructure scale. This leads to the FSI tight
coupling at the micro-scale, in contrast with the “standard”case of a given fixed elas-
ticity. For the scale decoupling of the limit advection term in the two-scale trasport
equation, the spectral based decomposition is proposed to avoid the use of the Laplace
transformation of the product of two time functions. Finite element method is ap-
plied to solve both the micro- and macrosscopic problems of the flow and transport.
Convolution kernels approximations are based on the Prony series to provide efficient
integration schemes. Numerical illustrations are reported.

Keywords: multiscale modelling, porous media, advection-diffusion, asymptotic ho-
mogenization, semipermeable interface, fluid-structure interaction, dynamic perme-
ability
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1 Introduction

Transport in fluid saturated porous media is one of the most important classic prob-
lems of continuum mechanics. Although it has been thoroughly studied especially in
the framework of the phenomenological approaches, there are still many modelling
issues which require more accurate treatment to respect influence of given specific
microstructure features on the effective behaviour observed at the macroscopic level.
Based on the microstructure periodicity the homogenization method and its numeri-
cal implementation present one of the best modelling approaches in the sense of the
a balance between the detail treatment of the coupled interactions between the fluid
and solid phases, on one hand, and the computational robustness and efficiency, on the
other hand.

The modelling approach employed in this study is based on the authors’ recent
works, namely those related to nonstationary fluid structure interaction and homoge-
nization [1, 2] and [3]. We focus on linearized problem, however nonlinear formula-
tions were considered e.g. in [2] and [4]. Further issues related to this paper include
homogenization of species transport in heterogeneous structures with advection ef-
fects due to the Darcy and Stokes flows [5], influence of evolving microstructures [6],
and large contrast in material parameters at the microstructure level. This latter issue
was treated in [7] introducing thus the double porosity scaling ansatz, [8] focusing on
the pressure discontinuity at interfaces, cf. [9].

In this short paper, we introduce the problem of interest defined the porous medium.
The studied processes at the heterogeneity level (in the microstructure) involve the vis-
cous fluid flow in a compliant skeleton stiffened by a rigid frame. Besides modelling
the fluid-structure interactions, we are interested in the transport of a solvent due to
the advection-diffusion processes in the fluid part and diffusion in the solid phase.
The derived two-scale model of these coupled processes is briefly reported in terms
the macroscopic model equations and the involved homogenized model parameters
describing effective properties of the porous medium.

2 Two-scale model of transport in porous structure

We consider microstructures constituted by soft elastic skeleton supported by an em-
bedded rigid scaffolds. In 3D, all the 3 phases, i.e. the fluid (index f), a very soft -
compliant elastic solid (index c) and the rigid structure - “the matrix” (index m) can be
connected (each one).

The flow and species transport is described in domain Ω ⊂ R3 decomposed into
three principal parts

Ω = Ωε
f ∪ Ωε

c ∪ Ωε
m ∪ Γε

fc ∪ Γmc , Ωε
f ∩ Ωε

c = ∅ ; Ωε
c ∩ Ωε

m = ∅ , (2.1)

where Γε
fc and Γmc are the interfaces between the fluid and the elastic solid, and be-

tween the elastic solid and the rigid frame.
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The microstructure heterogeneity is assumed to be periodic (or locally periodic)
given by the representative volume element (RVE) defined using periodic unit cell Y ,
subject to the following decomposition, see Fig. 1

Y = Yf ∪ Ys ∪ Γfs , where Γfs = ∂Yf ∩ ∂Ys ,
Ys = Yc ∪ Ym ∪ Γcm , where Γcm = ∂Yc ∩ ∂Ym .

(2.2)

We assume Yc separating the fluid and the “matrix”, so that ∂Yf ∩ ∂Ym = ∅, although
this assumption is not crucial. We shall use also Yfc = Yf ∪ Yc in the context of
volume integrals. By virtue of the homogenization modelling technique based on the
asymptotic analysis [10], the mathematical model represented by a system of PDEs
parameterized by the scale ε = ℓ/L relating the micro- and macroscopic characteristic
lengths. In the limit ε→ 0, we obtain a two-scale problem which can be decomposed
into so-called local problems solved in the Y , and the macroscopic problem introduced
in terms of the PDEs involving homogenized material coefficients.

fluid

rigid

solid
soft

fY

fY
cY

mY
cY

Figure 1: The periodic structure consisting of the fluid and a soft solid skeleton an-
chored in a rigid frame.

Material properties of the heterogeneous structure We consider a soft elastic
phase characterized by stiffness tensor IDc,ε = ε2ĪDc and the density ρc. The Newto-
nian fluid in pores is slightly compressible, characterized by the bulk stiffness kf , and
by the viscosity tensor IDf,ε = ε2ĪDf given byDf,ε

klij = µε(δikδjl+δilδjk−(2/3)δijδkl),
where µε is the dynamic viscosity, µε = ε2µ̄.

The periodic structure is characterized large contrast in the diffusivity coefficients.
In particular, the diffusivity in the solid skeleton is much smaller than the one in the
fluid. Accordingly, also the advection velocity in the dual porosity of skeleton Ωε

s is
scaled by ε. The advection is relevant to the fluid in Ωε

f , whereas there is no flow in
the solid Ωε

s.

Tε(wε(x)) =

{
w̄(x, y) y ∈ Yf ,

0 y ∈ Ys ,

Tε(Dε(x)) =

{
D̄(x, y) y ∈ Yf ,

ε2D̂(x, y) y ∈ Ys ,

Tε(κ
ε
θ(x)) = εκ̄θ(x, y), y ∈ ΓY .

(2.3)

The scaling of the interface diffusivity κεθ(x) by ε is the consequence of the surface
and volume measures; obviously |Ωε

f |/|Γε| ∼ 1/ε.
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2.1 Micromodel and interactions at pore level

We study fluid-structure interaction described by the displacement uε of the solid
phase and by the fluid velocity vf,ε in the channel. The transport of a species rep-
resented by its concentration θε. It is useful to introduce the kinematic decomposition
of the flow: fluid velocity vf,ε = wε + ũε, where wε = 0 on Γε

fc. By ˜ we denote
a (smooth) extension of vectorial field (displacement) from Yc to Yf . However, for
the sake of brevity, we may often drop the “tilde“ when referring to u extended into
Yf . The homogenization is applied to the following weak problem formulations of the
flow, deformation and transport.

• The solid deformations: the displacement field uε ∈ U(Ωε
c) = {v ∈ H1(Ωε

c)|v =
0 on Γε

cm}∫
Ωε

c

ε2ĪDce(uε) : e(v) +
∫
Ωε

c

ρεcü
ε · v −

∫
Γε

fc

v · σf,ε · ncdS =

∫
Ωε

c

v · f c,ε , (2.4)

for all v ∈ U(Ωε
c).

• The fluid flow: seepage velocity wε ∈ W (Ωε
f ) = {v ∈ H1(Ωε

f )|v = 0 on Γε
fs}

and the fluid pressure pε ∈ L2(Ωε
f ) satisfy∫

Ωε
f

ε2ĪDfe(wε + u̇ε) : e(ϑ)−
∫
Ωε

f

pε∇ · ϑ+

∫
Ωε

f

ρ0(ẇε + üε) · ϑ =

∫
Ωε

f

ϑ · f f,ε ,∫
Ωε

f

q (ṗε + kf∇ · (wε + u̇ε)) = 0 ,

(2.5)

for all ϑ ∈ W (Ωε
f ) and all q ∈ L2(Ωε

f ). The solid displacement uε is assumed
to be extended smoothly in Ωε

f .

• The species transport : Find θε ∈ V̂ ε
∗ (Ω), such that∫

Ω

∂tθ
εψε +

∫
Ω

(Dε∇θε − θεwε) · ∇ψε +

∫
Γε
fc

κεθ[θ
ε]Γε [ψε]Γε

=

∫
Ω

f εψε +

∫
∂Ω

(Dε∇θε − θεwε) · nψε dS , ∀ψε ∈ V̂ ε
0 (Ω)

(2.6)

2.2 Homogenization using asymptotic expansions

The homogenization applied the limit two-scale model is based on the periodic unfold-
ing method. The resulting equations can obtained formally using truncated asymptotic
expansions considered for all the involved fields; due to the decomposition (2.1) and
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(2.2) we get (note u1 is extended to the fluid domain)

Tε(uε(x, t)) = û0(x, y, t) + εu1(x, y, t) , y ∈ Yc ∪ Yf ,
Tε(wε(x, t)) = ŵ0(x, y, t) + εw1(x, y, t) , y ∈ Yf ,

Tε(p
ε
d(x, t)) = p0d(x, t) + εp1d(x, y, t) , y ∈ Yd, d = c, f ,

Tε(θ
ε(x, t)) = χf (y)[θ

0
f (x, t) + εθ1f (x, y, t)] + χsθ̂(x, y, t) ,

(2.7)

where χd is the characteristic function of domain Yd, d = f, s; the fluctuations u1

and w1 are irrelevant for the 1st order homogenization. Upon substituting (2.7) in the
unfolded equations obtained from formulations (2.4), (2.5), and (2.6), the limit equa-
tions are obtained by letting ε → 0. For this, analogous ansatz for the test functions
involved in the weak formulations is used, as the one in (2.7). Then, due to the system
linearity, a multiplicative decomposition of the two-scale solutions û0, ŵ0, p1d and θ1f , θ̂
into the macroscopic functions and autonomous characteristic responses is introduced
in terms of the Laplace transformation in time, which yields the two-scale functions

ŵ0(t, x, y) =

∫ t

0

wk(t− τ, y)∂τ∂
x
kp

0(t, x)dτ , y ∈ Yf ,

û0(t, x, y) =

∫ t

0

χk(t− τ, y)∂τ∂
x
kp

0(t, x)dτ , y ∈ Yc

p1d(x, y, t) =

∫ t

0

πk(t− τ, y)∂τ∂
x
kp

0(t, x)dτ , y ∈ Yd , d = c, f ,

(2.8)

and, in analogy, also for θ1f and θ̂; details are skipped here, see below.

2.3 Flow problem – two-scale limit model

The resulting model consists of the characteristic autonomous problems and the macro-
scopic equation attaining the form of a non-stationary Darcy flow.

Characteristic responses for the fluid flow The weak formulation of the local prob-
lem involves bilinear forms associated with the soft elasticity in Yc, viscous fluid dis-
sipation in Yf , inertia of both the solid and fluid, and the inner products, defined as
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follows

ac (u, v) =
∫
Yc

ĪDcey(u) : ey(v) ,

af (w, v) = µ̄

∫
Yf

∇yw : ∇yv ,

ϱf (u, v) =
∫
Yc

ρcu · v ,

⟨p, q⟩Yf
=

∫
Yf

pq ,

⟨u, v⟩Yc
=

∫
Yc

u · v , where
∫
Yd

=
1

|Y |

∫
Yd

.

(2.9)

The following spaces are employed: H1
#(Y ) is the Sobolev space of vector-valued

Y-periodic functions (the subscript #). Further H1
#0(Yf ) is restricted to the fields wit

vanishing trace on Γfc, the channel wall. We employ spaces of admissible displace-
ments, U(Yfc) = H1

#(Yc) ∩H1
#0(Yfc) and Ũ(Yfc) = {v ∈ U(Yfc)| ∇y · v = 0 in Yf},

and the space of admissible pressure, Q(Yfc) = L2(Yfc) ∩ (H1
#(Yf ) ∪H1

#(Yc)).
The characteristic autonomous responses of the microstructure with respect to unit

macroscopic pressure gradients must be computed by solving the following problem.
Find (χk(t, y),wk(t, y), πk(t, y)) ∈ Ũ(Yfc)×H1

#0(Yf )×Q(Yfc) for t > 0, satisfying
zero initial conditions, (χk(0, y),wk(0, y), πk(0, y)) = 0, and ∂tχk(0, y) = 0, such
that

ac
(
χk, v

)
+ af

(
wk + ∂tχ

k, ṽ
)
−

〈
πk, ∇y · ṽ

〉
Yc∪Yf

+ρ0
〈
∂twk + ∂ttχ

k, ṽ
〉
Yf

+ ϱc
(
∂ttχ

k, v
)
= −H+(t)

〈
1k, ṽ

〉
Yc∪Yf

,

af
(
wk + ∂tχ

k, ϑ
)
−

〈
πk, ∇y · ϑ

〉
Yf

+ ρ0
〈
∂twk + ∂ttχ

k, ϑ
〉
Yf

= −H+(t)
〈
1k, ϑ

〉
Yf

,〈
q, ∇y · (wk + ∂tχ

k)
〉
Yf

= 0 ,〈
q, ∇y · χk

〉
Yc

= 0 ,

(2.10)

for all ṽ ∈ Ũ(Yfc), ϑ ∈ H1
#0(Yf ), and q ∈ Q(Yfc). Above, H+(t) is the Heaviside

function.

Macroscopic flow model The macroscopic problem in time domain attains the fol-
lowing form: given an initial state p(0, x) = p̄(x), x ∈ Ω, find pressure p0 ∈ H1(Ω),
such that p0 = p∂ on ∂pΩ ⊂ ∂Ω satisfies

C∂tp0 +∇x ·
∫ t

0

K̂(t− τ)
∂

∂τ

(
f̄(τ, ·)−∇xp

0(τ, ·)
)
dτ , a.e. in Ω , (2.11)

involving the homogenized coefficients K̂ and C.

6



The dynamic permeability K̂(t) = K̂ij(t) constitutes a convolution kernel in (2.11).
It is introduced using the average of the total fluid velocity in the fluid channels,

K̂kj(t) = −
〈
1k, wj

〉
Yf

−
〈
1k, ∂tχ̃

j
〉
Yc∪Yf

= ac
(
χk, ∂tχ

j
)
+ af

(
wk + ∂tχ̃

k, wj + ∂tχ̃
j
)

+ ρ0
〈
∂twk + ∂ttχ̃

k, wj + ∂tχ̃
j
〉
Yf

+ ϱc
(
∂ttχ

k, ∂tχ
j
)
.

(2.12)

Moreover, a symmetric expression can be obtained in the Laplace-time domain,

∗̂
K

kj
(λ) = −

〈
1k,

∗
wj

〉
Yf

− λ
〈
1k, ˜

∗
χj

〉
Yc∪Yf

= λ2ac

(
∗
χk,

∗
χj

)
+ λaf

(
∗

wk + λ
∗
χ̃k,

∗
wj + λ

∗
χ̃j

)
+ λ2ρ0

〈
∗

wk + λ
∗
χ̃k,

∗
wj + λ

∗
χ̃j

〉
Yf

+ λ4ϱc

(
∗
χk,

∗
χj

)
.

(2.13)

The bulk material is compressible, characterized by the effective compressibility

C =
ϕf

kf
+

∫
Yc

1

kc
. (2.14)

2.4 Species concentration – trasport problem

The two-scale concentrations defined in the fluid and solid parts are expressed in terms
of characteristic responses which are needed to compute the homogenized coefficients
of the macroscopic transport equation.

Characteristic responses for the species transport in the fluid channels Yf The
local concentration in the channel is governed by the following limit transport equation

−
∫
Yf

θ0f ŵ · ∇yψ +

∫
Yf

D̄(∇yθ
1
f +∇xθ

0
f ) · ∇yψ = 0 , ∀ψ ∈ H1

#(Yf ) , (2.15)

where the advection velocity is the two-scale function ŵ(t, x, y) given for in y ∈ Yf
by the solution p0 of (2.11). Recall ŵ is expressed in terms of the time convolution,
involving wk, the solution of (2.10). To introduce the characteristic concentration
responses of the microstructure independently of the macroscopic fields, namely θ0f
and ∂xkp

0, we use the approach based on the spectral decomposition of the diffusion
operator.

Consider the following eigenvalue problem: find (ηr, ϑr) ∈ R×H1
#(Yf ), such that,

for r = 1, 2, . . . ,∫
Yf

(D̄∇yϑ
r) · ∇yψ = ηr ⟨ϑr, ψ⟩Yf

, ∀ψ ∈ H1
#(Yf ) ,

⟨ϑr, ϑs⟩Yf
= δrs .

(2.16)
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Using the projection in the basis {ϑr} defined due to (2.16), we can introduce coeffi-
cients brw(t, x) and br∇(t, x), such that

θ1,wf (t, x, y) =
∑
r

brw(t, x)ϑ
r(y) ,

θ1,∇f (t, x, y) =
∑
r

br∇(t, x)ϑ
r(y) ,

(2.17)

where br∇ is given by the diffusion flux,

br∇(t, x) =
∑
k

b̄rk,∇∂
x
kθ

0
f (t, x) ,

b̄rk,∇ = − 1

ηr

∫
Yf

(D̄∇yϑ
r)k ,

(2.18)

wherease brw(t, x) is due to the advection velocity,

brw(t, x) =
∑
k

b̃rk,w(t, x)θ
0
f (t, x) ,

crk(t) =
1

ηr

∫
Yf

wk(t, y) · ∇yϑ
r(y)dy ,

b̃rk,w(t, x) =

∫ t

0

crk(t− τ)∂τ∂
x
kp

0(τ, x)dτ .

(2.19)

Characteristic responses for the species diffusion in the solid Ys In the skeleton,
assuming no advection, the local problem describes a non-stationary diffusion. We
consider the case of interfaces Γfc with a reduced diffusivity which yields the interface
intergral in (2.6), hence, the discontinuity of the concentration, θ̂(t, x, ·) ̸= θ0f (t, x)
and the associated test functions. The local problem is nonstationary, in general,〈

∂tθ̂, ψ̂
〉
Ys

+

∫
Ys

(D̂∇yθ̂) · ∇yψ̂ +

∫
Γfs

κ̄θθ̂ψ̂ =

∫
Γfs

κ̄θθ
0
f ψ̂ , ∀ψ̂ ∈ H1

#(Ys) .

(2.20)

Upopn introducing the characteristic responses ϑ̄0
f (y) and ϑ̃f (t, y), the species con-

centration in the solid, θ̂, is expressed by the time convolution

θ̂(t, x, ·) = θ̃(t, x, ·) + θ̂0(x, ·)

=

∫ t

0

ϑ̃0
f (t− τ, ·)∂τθ0f (τ, x)dτ + ϑ̄0

f θ̄
0
f (x) .

(2.21)

The characteristic responses ϑ̄0
f and ϑ̃0

f are solutions of the following two local
problems:
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1. Find ϑ̄0
f ∈ H1

#(Ys) satisfying∫
Ys

(D̂∇yϑ̄
0
f ) · ∇yψ̂ +

∫
Γfs

κ̄θϑ̄
0
f ψ̂ =

∫
Γβ

κ̄θψ̂dSy , ∀ψ̂ ∈ H1
#(Ys) . (2.22)

2. Find ϑ̃0
f (t, ·) ∈ H1

#(Ys), such that ϑ̃0
f (0, ·) = 0 in Ys, satisfying〈

∂tϑ̃
0
f , ψ̂

〉
Ys

+

∫
Ys

(D̂∇yϑ̃
0
f ) · ∇yψ̂ +

∫
Γfs

κ̄θϑ̃
0
f ψ̂ =

∫
Γβ

κ̄θψ̂dSy , ∀ψ̂ ∈ H1
#(Ys) .

(2.23)

Macroscopic model of the transport problem The macroscopic concentration θ0f
is governed by transport equation which is obtained from (2.6) in the two-scale limit
upon introducing there the homogenized coefficients defined below. The macroscopic
problem becomes: Find θ0f (t, ·) ∈ V f (Ω) for any t ≥ 0 which satisfy∫

Ω

ψ0
f

[
ϕf∂tθ̃

0
f +

(
Ḡθ̄0f +

∫ t

0

G̃(t− τ)
d

d τ
θ̃0f (τ)dτ

)]
+

∫
∂Ω

n · W̄fθfψfdS +

∫
Ω

∇xψ
0
f ·

(
D∇xθ

0
f −Wθ0f

)
=

∫
Ω

f̄fψ
0
f ,

(2.24)

for all ψ0
f ∈ V f

0 (Ω).
The transport in the fluid channels is reflected by the effective diffusivity D =

(Dij)

Dij =

∫
Yf

D̄f
ij −

∑
r

ηrb̄ri,∇b̄
r
j,∇ , (2.25)

see (2.18), and the effective advection W = (Wi) which comprises the mean fluid
velocity W̄f and also the non-stationary effect due to the flow,

Wi =

∫
Yf

w −
∫
Yf

(D̄f∇yϑ
r) · ∇yyi

∫ t

0

crk(t− τ)∂τ∂
x
kp

0(τ, x)dτ . (2.26)

The diffusion in the solid is represented by coefficients Ĝ(t), such that

Ĝ(t) := G̃(t)− Ḡ ,

where G̃(t) =
∫
Γfs

κ̄θ

(
1− ϑ̃f (t, y)

)
dSy ,

Ḡ =

∫
Γα

κ̄θ
(
1− ϑ̄0

f

)
dSy ,

(2.27)

where the characteristic responses ϑ̃f and ϑ̄0
f reflect the solid diffusivity D̂, including

κ̄θ, the one of the wall.
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Figure 2: Steady characteristic displacements χk in Y , coordinate modes k = 1 (left),
k = 2 (right). Note that χk in Yf is defined as an extension from solid Yc

Figure 3: Steady characteristic velocities wk in Yf . coordinate modes k = 1 (left),
k = 2 (right)

2.5 Numerical results – illustration

We consider a 2D microstructure whose the geometry is apparent from the pictures
illustrating the characteristic responses, see Figs. 2-4. Although all the responses
are time-dependent, the figures report distributions of χk, wk and πk for the steady
state, t → ∞. The mechanical properties of the solid and fluid phases are given in
Tab. 1, where “shear stiffness in Yf” is employed to define the smooth extension of
displacements from solid Yc to fluid Yf .

The transient response of the microstructure, namely the flow is characterized by
the permeability serving the convolution kernel K̂ij(t), see Fig. 5. For t → ∞, K̂,
the static permeability K̄. The oscillations of the kernel are due to the inertia effects
involved in the fluid-structure interaction in problem (2.10), decaying with time due
to the viscous dissipation.

The macroscopic response is illustrated by a steady state flow in the homoge-
nized medium characterized by the static permeability K̄. In Fig. 6, p0 is displayed
in rectangular domain Ω =]0, L1[×]0, L2[ with prescribed pressure on the left side,
p0(x1 = 0, x2) = cos(2πx2/L2) and right side p0(x1 = L1, x2) = 0, whereby
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Figure 4: Steady characteristic pressures πk in Yc (top) and in Yf (bottom) . Left:
k = 1. Right: k = 2.

n · K̄∇p0 = 0 is considered on the “upper” and “lower” sides, x2 = L2 and x2 = 0.
Fig. 7 shows the reconstruction of the fluid velocity in channels of the local mi-
crostructures at three different positions.

Fluid phase (water)
µ̄ = 10 Pa

ρf = 103 kg/m3

kf = 2.1 109

Elastic phase (bio tissue)
ke = kf
ρe = ρf
G = 108 Pa

Shear stiffness in Yf
Gf/G = 10−4

Table 1: Simulation parameters and coefficients.

3 Concluding remarks

The objective of this short paper was to introduce the problem of the homogenization
based multiscale modelling of viscous flows and advection-diffusion driven transport
of species in porous structures featured by very soft elastic skeleton interacting with
the fluid flow. By virtue of the asymptotic analysis concerning the scale ε → 0 and
the skeleton elasticity scaled by ε2, the resulting limit microscopic problem to solve
describes the tight fluid-structure interaction. This consequently influences the hy-
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Figure 5: Time-evolution of the permeability component K̂ij . The diagonal compo-
nents are related to the right-hand axis scale (∼ 10−5), the off-diagonal ones
to the left-hand axis scale (∼ 10−6).

draulic dynamic permeability which reflects mechanical properties of both the fluid
and solid phases. The advection velocity field is involved in the transport problem. To
treat nonstationary flow and species transport, we propose the spectral decomposition
based decomposition of the concentration. This enables to avoid the use of the Laplace
transformation of the product of two time functions. The derived homogenized trans-
port reflects also the solid diffusivity including the fluid-solid interface. Although the
presented problem is illustrated by applications in tissue engineering, the presented
model can be developed further towards many other applications dealing with porous
and compliant structures. As a further model extension towards such applications, the
rigid frame Ωε

m of the skeleton will be replaced by an elastic one, but much stiffer than
the soft material in Ωε
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Figure 7: Advection velocity w at three macroscopic location on the same “vertical”
line x2 = 0.2. With the macro pressure distribution as shown in Fig.6. From
left to right: x = (0.2, 0.25) i.e. ∇p0 = (−0.08,−1.64), x = (0.2, 0.5) (
x is on horizontal meridian) i.e. ∇p0 = (1.65, 0.09), and x = (0.2, 0.75)
i.e. ∇p0 = (−0.10, 1.92), with the macroscopic lengths size L1 = 1.5 and
L2 = 1.
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