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Abstract 
 

In this paper the author suggests a less complex wing theory in ideal fluids that 

connects lift force and drag force of a finite 3-dimensional wing with mass flow into 

the generated vortex cores.  

Suggesting an induced drag in ideal fluids for 2-dimensional wing sections, leads to a 

modified version of the equation Prandtl has derived for the relation between lift force 

Fy and drag force Fx of a 3-dimensional finite wings. This new equation goes over into 

Prandtl’s equation, if we have low aspect ratios of the wings.   

The author derives equations that calculates the vortex core radius of the generated 

vortexes and are connecting the mass flow into the vortex cores with drag and lift of 

the wing. Additionally, the author shows, that the power to compensate for the drag 

of a plane in an ideal fluid is consumed by the rotational power of the generated vortex 

cores. 
 

Keywords: ideal fluids, wing theory, vortex core, lift coefficient, drag coefficient, 

random walks. 
 

1     Introduction 
 

A model for unsteady potential flow in ideal fluids, called the Random Walk Source 

Model is presented in [1]. This model generates the shape of a particle front emerging 

from a line source, creeping towards and past a wing section. The lift coefficient can 

be predicted by the difference of creeping distance between the two front segments 

that have been separated by the wing section and an extended separation line which 
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maintains the Kutta condition. The front is a result of a model of unsteady potential 

flow, and further leads to an unexpected developments of an equation leading to the 

formulation of an induced drag in 2- dimensions in ideal fluids. We have to account 

for this part of the drag also in 3- dimensions, which is made in the following 

description. 

Wake vortices behind planes are a typical topic in fluid dynamics. Lanchester [2] and 

Prandtl [3] described the 3-dimesional flow behind wings with finite span in ideal 

fluids, resulting in an induced drag out of the ability to generate a circulation, in a 

relation between lift force 𝐹𝑦 and expected drag force 𝐹𝑥:  

 𝐹𝑥 = 𝐹𝑦  ∙  
𝑤∞

2𝑢∞
                                                           (1) 

Where 𝑢∞ is the velocity of the plane and 𝑤∞ is the induced downward velocity of 

the fluid flow. 

As described in [4] the relation between 𝐶𝑙 and 𝐶𝑑 is stated as an induced drag in 3- 

dimensional flow in ideal fluids and now additionally an induced drag in 2- 

dimensional flow:  

 

 𝐶𝑑 = (
𝐶𝑙

2𝜋
)

2

∙
𝜋∙ln(1+√2)

√8
+

𝐶𝑙
2

𝜋Λ
                                 (2) 

 

This is leading to the equation: 
 

 𝐹𝑥 = 𝐹𝑦  ∙  
𝑤∞

2𝑢∞
 ∙ [ 

Λ ∙ln (1+√2)

4 ∙√8
+  1]  (3) 

     
     

 

Where Λ is the aspect ratio of the wing. This is an extension of formular (1). Formular 

(2) is gradually going over into formular  (1) when Λ is close or less 1.  
  

 

2        Level flight of a wing of finite span  in ideal fluids 
 

We calculate 𝐶𝑙 out  of the lift force 𝐹𝑦 and the speed 𝑢∞ of the plane together with 

the density 𝜌 and the area A of the wing: 

 

𝐶𝑙 =
2∙𝐹𝑦

𝜌∙𝑢∞∙𝐴
   (4)  

 

𝐶𝑑 the drag coefficient of the wing is then calculated according to equation (2). 

 

Alternatively the author suggests to formulate the drag coefficient with help of the 

mass flow 𝑚̇𝑐𝑜𝑟𝑒 into the vortex cores generated from the wing and the descent 

velocity 𝑤∞. 

 

𝐶𝑑 =  
2∙𝑚̇𝑐𝑜𝑟𝑒∙𝑤∞

𝜌∙𝑢∞
2∙𝐴

   (5)  
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The mass flow 𝑚̇𝑐𝑜𝑟𝑒 is defined as 

 

𝑚̇𝑐𝑜𝑟𝑒 =  𝐶𝑑 ∙
𝜌

2
∙ 𝐴 ∙

𝑢∞
2

𝑤∞
   (6) 

  

 
 

and 𝑤𝑜𝑜 is defined as 

                                                𝑤∞ =
Γ0

𝑏1
  (7)  

 
 

Where 𝑏1 is the wingspan, and Γ0 the circulation 

 
                                                          Γ0 = 4 ∙ 𝑇1 ∙ 𝑢𝐻𝐾   (8) 
 
Where 𝑇1 is the average wing width, the wing area is 𝐴1 =  𝑏1 ∙ 𝑇1 

with  

𝑢𝐻𝐾 =
𝐶𝑙∙𝑢∞

2∙𝜋
  (9) 

  

 

We can then write the drag force 

 

                                                       𝐹𝑥 =  𝑚̇𝑐𝑜𝑟𝑒  ∙  𝑤∞  (10) 

 

And the lift force 

𝐹𝑦 = 𝑚̇𝑐𝑜𝑟𝑒 ∙
𝐶𝑙

𝐶𝑑
∙ 𝑤∞ (11)  

 

The vertical mass flow generating the lift force is according to Prandtl the flow 

through a circle area with the wing span as the diameter. Fluid particles are entering 

this area with 𝑢∞, perpendicular to this area. This mass flow is moving down with 

𝑤∞, parallel to the area 

 

 
𝐹𝑦 = 𝑚̇𝑦 ∙ 𝑤∞ (12) 
  

Where 𝑚̇𝑦 is defined (as explained above) 

 
𝑚̇𝑦 = 𝑉̇1 ∙ 𝜌 (13)  

with   
  
𝑉̇1 =  𝐴01 ∙ 𝑢∞ (14)  

 

 

Here 𝐴01 is a circle with the wing span as the diameter 
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𝐴01 =
𝜋∙𝑏1

2

4
 (15)  

 

The relation between 𝑚̇𝑦 and 𝑚̇𝑐𝑜𝑟𝑒 is 

 

 
𝑚̇𝑦

𝑚̇𝑐𝑜𝑟𝑒
=

𝐶𝑙

𝐶𝑑
                                              (16) 

 

3        Comparing calculated core radius with published experiments 
 

In Figure 1 the calculated vortex core 

 𝑟𝑐𝑜𝑟𝑒 = √
𝐴

4
∙

𝐶𝑙

2𝜋
 (17)  

 

 is compared to an experiment published in [5]. The calculated tangential velocity and 

the core radius is fitting good into the experimental data. 

 
Figure 1: Vortex radius and vortex tangential velocity reproduction from [5] circles 

are experimental data, squares ∎ are calculated according (17) 

 

𝑟𝑐𝑜𝑟𝑒 = √
𝐴

4
∙

𝐶𝑙

2𝜋
= 4.99 𝑚   

and     𝑢𝐻𝐾 =
𝐶𝑙∙𝑢∞

2∙𝜋
= 15.26 𝑚/𝑠    the vortex tangential velocity. 𝐶𝑙 = 1.23 is the lift 

coefficient, 𝑢∞is the velocity of the plane here 78 m/sec and A is the wing area 510 

m2 
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4       Power calculation 
 

Here we write down the power that is consumed to keep the wing flying on level 

consisting of the drag force multiplicated with the velocity of the wing 

 

 
𝑃∗

𝑡𝑜𝑡 =  𝐹𝑥 ∙ 𝑢∞ (18) 
 

 

Alternatively we can see on the descent velocity 𝑣𝑦 of the unpowered wing in relation 

to the horizontal velocity 𝑢𝑜𝑜 of the wing with the known relation between 𝐶𝑑 and 𝐶𝑙. 

We use the relation 

 

 
𝐶𝑑

𝐶𝑙
=

𝑣𝑦

𝑢∞
  (19)  

 

That leads to the descent velocity 

 

 𝑣𝑦 =
𝐶𝑑∙𝑢∞

𝐶𝑙
  (20)  

 

The lifting force multiplicated with the descent velocity is the power to keep the plane 

on level according to lift and drag. 

 

 

 𝑃∗
𝑡𝑜𝑡 = 𝐹𝑦 ∙ 𝑣𝑦 = 𝑚̇𝑦 ∙ 𝑤∞ ∙ 𝑣𝑦 (21)  

 

 

The kinetical energy of the vortex cores (seen as cylinders with radius 𝑟𝑐𝑜𝑟𝑒 ) is 

calculated 

 

𝐸𝑘𝑖𝑛 =
1

2
∙ Θ ∙ 𝜔2 (22)  

 
 
Where Θ is the momentum of inertia of a cylinder (the vortex core) which is growing 

in length in time leading to Θ̇ 

 

 

The rotational power of the vortex cores (kinetical energy per time) is calculated 
 
 

 𝑃∗
𝑐𝑜𝑟𝑒 = 𝐸̇𝑘𝑖𝑛 =

1

2
∙ Θ̇ ∙ 𝜔2 (23)  

 

 

Where 𝜔 is the angular velocity  
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 𝜔 =
𝑢𝐻𝐾

𝑟𝑐𝑜𝑟𝑒
  (24)  

 

 

 

 

Inertial mass Θ of a cylinder (representing the vortex cores) 

 

 

 

 Θ =
1

2
𝑚𝑐𝑜𝑟𝑒 ∙ 𝑟𝑐𝑜𝑟𝑒

2    (25)  

 

 

 

Ongoing flow into the vortex core (the vortex core is a cylinder with constant radius 

𝑟𝑐𝑜𝑟𝑒 increasing the mass with growing length) 

 

 

 

 

 Θ̇ =
1

2
𝑚̇𝑐𝑜𝑟𝑒 ∙ 𝑟𝑐𝑜𝑟𝑒

2  (26)  

 

 

 

Leading to the rotational power of the vortex cores 

 

 

 

 𝑃∗
𝑐𝑜𝑟𝑒 =

1

4
∙ 𝑚̇𝑐𝑜𝑟𝑒 ∙ 𝑢𝐻𝐾

2 (27)  

 

 

Leading to the relation 

 

 

 

 
𝑃∗

𝑡𝑜𝑡

𝑃∗
𝑐𝑜𝑟𝑒

=
𝐶𝑙

𝐶𝑑
 (28) 

 
 
 
 

3     Results 
 

Figure 2 is showing a survey over the suggested equations. 
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Figure 2: Visualization of lift and drag of a Boeing 747 according to the theory 

suggested in this paper. Plane parameter from [6] calculated values in Table 1 
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Description Parameter Value  

Lift force 𝐹𝑦 2952000 N  

Air density 𝜚 0.358 kg/m3  

Plane velocity 𝑢∞ 250 m/s  

Wing span  b1 60 m  

Wing area A1 510 m2  

Circulation Γ 699.92 
𝑚2

𝑠
  

Aspect ratio Λ 7.058  

 Calculated values  Used equation 

Drag force 𝐹𝑥 106746,16 N (3) 

Mass descent velocity 𝑤∞ 11,6654 m/s (7) 

Area of influenced 

mass 

A01 2827,433 m2 (15) 

Downward accelerated 

volume  
𝑉̇1 706858.347 

𝑚3

𝑠
 (14) 

Lift coefficient 𝐶𝑙 0.517384 (4) 

Average wing section T1 8.5 m  

Trailing edge velocity 𝑢𝐻𝐾 20.586 m/s (9) 

Drag coefficient 𝐶𝑑 0.01870893 (2) 

Mass flux into the cores 𝑚̇𝑐𝑜𝑟𝑒 9150.6369 
𝑚3

𝑠
 (6) 

Mass flow vertical 𝑚̇𝑦 253055.2882 
𝑚3

𝑠
 (13) 

Core radius 𝑟𝑐𝑜𝑟𝑒 3.240199 m (17) 

Total power used 𝑃∗
𝑡𝑜𝑡 26686539.8 

Nm/s 

(18) 

Power consumed from 

the vortex cores 
𝑃∗

𝑐𝑜𝑟𝑒 969477.8 Nm/s (27) 

Power relation 𝑃∗
𝑡𝑜𝑡

𝑃∗
𝑐𝑜𝑟𝑒

=
𝐶𝑙

𝐶𝑑
 

27.65 (28) 

Table 1: Input parameter Boeing 747 [6] and from the author calculated values. 
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4     Conclusions 
 

A wing section has no drag in ideal fluids according to the potential theory. We can 

calculate the circulation which is leading to the lift force. The start vortex is moved to 

vicinity and has lost the influence in the theoretical model. In reality we have a vortex 

pair in 2- dimensions which is continuously fed with attracted fluid particles. In the 

random walk source model [1],[4] it is shown, that you can identify an induced drag 

from wing sections in ideal fluids in 2- dimensions which is resulting in an equation 

that connects lift coefficient and drag coefficient. This is unexpected. In [4] it is shown 

that you can calculate the relation of this coefficients for a rotating cylinder with 

endplates. Also this is unexpected because we assume, that we have a highly turbulent 

flow behind the cylinder. In this paper the author transfers the knowledge of induced 

drag in 2- dimensions to wings in ideal fluids in 3- dimensions, se Figure 3. It is 

shown, that the core radius of vortex cores is depending on the lift coefficient and the 

wing area. Attracted fluid particles are feeding the vortex core generating the drag 

through the rotational power in the vortex cores.  It is presented an equation (3) which 

is a modification of Prandl’s relation (1) between lift force and drag force of wings in 

ideal fluids.  In the presented equations the relation between lift coefficient and drag 

coefficient is the same relation as between the mass that is moved downward from the 

plane (to generate the lift) compared to the mass that is flowing into the vortex cores 

(16). The total power to keep the plane on level (18) divided by the power to keep the 

vortex cores rotating (27) is  
𝐶𝑙

𝐶𝑑
  (28).   

 
Figure 3: Equations connected with arrows, showing the calculation from generated 

lift force to drag force of a finite wing in ideal fluids. Calculation of lift and drag of 

a Boeing 747 according to the theory suggested in this paper taking into account the 

volume flux into the vortex cores and the vertical vortex flux generated by the plane. 

Plane parameter from [6] calculated values explained in Table 1.  
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