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Abstract 
 

This study presents a numerical model for predicting the thermal buckling behaviour 

of thin-walled porous functionally graded beams. A geometric nonlinear algorithm, 

utilizing a 1D numerical model with a spatial beam finite element, is employed. Small 

strains are defined using the Green-Lagrange tensor. The finite element model is 

developed based on Euler-Bernoulli theory for bending and Vlasov theory for torsion. 

Nonlinear analysis is conducted using the updated Lagrangian incremental 

formulation and the principle of virtual work. The displacement field accounts for 

large rotations and torsion with warping. Material properties are assumed to vary 

continuously through the wall thickness, following a power-law distribution. The 

proposed beam model analyzes buckling under uniform, linear, and nonlinear 

temperature distributions across the thickness of the cross-sectional walls, while also 

considering the temperature-dependent mechanical material properties. Numerical 

results explore critical buckling temperatures and post-buckling behaviour for various 

thin-walled sections, with different configurations including boundary conditions, 

geometry, FG skin-core-skin ratios, and power-law indices. Numerical results 

investigate critical buckling temperatures and post-buckling behaviour for various 

thin-walled beam cross-sections, boundary conditions, geometry, FG skin-core-skin 

ratios, and power-law exponent. The algorithm is validated with commercial software 

2D finite element results. An acceptable agreement is recognized comparing to those 

obtained by shell models. 
 

Keywords: finite element analysis, thermal buckling, thin-walled beam, porous FG 

material, temperature distribution, large rotations. 
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1  Introduction 
 

Functionally graded (FG) materials with porosity are a class of advanced composite 

materials that exhibit spatially varying properties across their structure. Usually, FG 

materials are composed of ceramic and metal, and their material properties varies 

continuously over the thickness of the cross-section. The inclusion of porosity, which 

can be controlled to varying degrees, adds another layer of complexity to these 

materials, allowing for tailored mechanical, thermal, and acoustic properties. 
 
 

The thermal buckling and vibration of FG thin-walled beams and structures have 

gained significant attention in recent research, primarily due to the intricate behavior 

of these lightweight materials with enhanced thermomechanical properties. However, 

only a limited number of studies are referenced here [1–5]. On the other hand, research 

concerning the thermal buckling of FG porous beams in thermal environments 

remains relatively limited [6–11]. 
 

 

The primary goal of this paper is to introduce the developed beam model for 

analyzing thermal buckling in FG thin-walled beam structures and to explore the 

impact of the porous volume fraction on buckling behavior. The analysis relies on the 

numerical model created by the authors [12–15], which has been validated through 

benchmark shell examples. 
 

 

 
 

2  Theoretical background 
 

Since this paper is an extension of the previous ones [12-15], in which all the 

theoretical background is described including: the description of the basic beam 

model, beam kinematics, finite element formulation, nonlinear stability algorithm and 

the author's software Thinwall FG, this chapter will just shortly present the 

distribution of FG material mechanical and temperature properties, temperature 

distribution as well and introduce the constitutive equations themselves. 

 

 

 The material properties vary continuously through the wall thickness according to the 

power law distribution [7]: 
 
 

P (n,T) = [Po (T) − Pi (T)] ∙ Vc (n) + Pi (T) − 0,5ρ ∙ [Po (T) + Pi (T)]. 

    (1) 

 

Where P.representes the material property as Young's modulus E, shear modulus 

G, Poisson’s ratios ν or coefficient of thermal expansion α and conductivity K. The 

subscripts i and o indicates the inner and outer surface constituents respectively. In 

addition, Vc is the volume fraction of the ceramic phase. The small imperfection of 

the material is presented by scalar coefficient ρ<<1. Imperfect porous FG material is 

shown in Fig. 1. 
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Figure 1: Imperfect porous FG material. 
 

 

 

To more accurately predict the buckling behavior of functionally graded (FG) 

beams under thermal loads, the material properties are considered temperature-

dependent. The nonlinear relationship between material properties and temperature T 

can be expressed as: 
 

P = P0 (P-1 T
-1 + 1 + P1 T + P2 T

2 + P3 T
3),

       (2) 

where temperature coefficients P0, P-1, P1, P2 and P3 are specific to each material[16].  
 

The stress and strain relation can be defined in generalized form of Hooke's law, 

given by: 
 

                      σz = E (n,T) ∙ [εz – α (n,T) ∙ ΔT], τzs = G (n,T) ∙ γzs.

          (3)

 

The normal and shear stress components are represented by σz and τzs, corresponding 

strain components are denoted as εz, and γzs. The directions n and s correspond to the 

normal and transverse directions of the flange, respectively, whereas the z-direction 

runs along the beam’s axis. The term ΔT signifies the change in temperature.  
 

Temperature distribution through the thickness of the beam may be uniform, linear, 

or nonlinear. When there is no internal heat generation, the steady-state one-

dimensional heat conduction equation takes the form[17]:  
 

d(K(n,T)dT/dn)/dn = 0,

           (4) 

and the temperature variation through the wall thickness is given by: 

T(n) = Ti(z)+ C(T) ∙ [To (z) – Ti (z)] / D(n,T),

           (5) 

The constants C and D can be found in Ref [2]. By assuming equal thermal 

conductivity coefficients, Ki = Ko, equation (5) can be used to derive a linear 

temperature distribution. On the other hand, to obtain a uniform temperature 

distribution, it is necessary to assume that the temperature is constant throughout the 

beam, i.e., To= Ti.  
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3  Example 
 

Fig. 2 shows a three-story spatial frame subjected to four vertical forces of the same 

intensity F. The frame is made of I-beams. The height of the frame columns is H = 10 

m, and the length of the horizontal beams is L = 10 m. In addition at the supports, the 

warping is prevented as well as at all joints from E to P. The frame and the flanges of 

the profile are made from FG materials, SUS304 and Al2O3, in the FG sendwich form  

with a pure metal core in the middle and FG skins that vary from pure metal to pure 

ceramic on the outer surface. Three cases of FG material distribution were considered 

for the exponent p = 0, p = 0.3, and p = 3. 
 

 
 

Figure 2: The spatial frame subjected to vertical forces of intensity F. 

 

The loss of the stable deformation form of the frame when the vertical forces F reach 

the critical value is manifested in the twist-sway mode, where the upper floors move 

along the X-axis with rotation around the Y-axis, and the sway mode, where the upper 

floors move along the X-axis without rotation around the Y-axis. To initiate the twist-

sway mode, the horizontal forces in the X-axis direction were applied at points E, I, 

and M, as well as , the horizontal forces in the negative Z-axis direction at points F, J, 

and N with intensity ∆F = 0.001F were applied. To initiate the sway mode, horizontal 
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forces in the X-axis direction with intensity ∆F = 0.001F were applied at E, H, I, L, 

M, and P. A comparison of beam model critical buckling results with the shell model 

is given in Table 1, and the buckling modes are shown in Fig. 3. 
 

Exponent p Buckling mode Thinwall FG Shell model 

𝒑 = 𝟎 
Twist-sway 6075,67 6148,38 

Sway 8727,68 8838,96 

𝒑 = 𝟎, 𝟑 
Twist-sway 6557,62 6666,67 

Sway 9419,38 9579,07 

𝒑 = 𝟑 
Twist-sway 7555,59 7704,73 

Sway 10852,40 11073,03 

Table 1: Comparison of eigenvalue results. 

 

 

 

  

 

 

a)                                                                 b) 

Figure 3: Buckling modes a) twist-sway; b) sway 
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Furthermore, a nonlinear stability analysis of the frame was performed for both 

buckling modes. Fig. 4 shows the nonlinear response for the twist-sway buckling 

mode, where the displacement of point E along the X-axis was observed, and Fig. 5 

shows the sway mode, where the displacement of point H along the X-axis was 

observed. Both analyses were carried out for all three values of exponent p. 

 

 

Figure 4: Nonlinear response for the twist-sway buckling mode 

 
Figure 5: Nonlinear response for the sway buckling mode 

The nonlinear response of the frame was observed when the columns are uniformly 

heated. It is assumed that the material properties change with temperature. Fig. 6 

shows the displacement of point H along the X-axis as a function of temperature for 

three levels of critical buckling force and the exponent p=0 (isotropic metal). The 

higher critical buckling temperature coresponds to lower the force.  
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Figure 6: Temperature vs displacement for three levels of critical force F for p=0 

 

The frame's was then analyzed for the exponent p=0.3 at a force of 80% Fkr and for 

the exponent p=3 at a force of 70% Fkr. A comparison was also made with a porous 

material with a porosity coefficient ρ=0.1. As the exponent p increases, the ceramic 

content in the composite material increases, resulting in higher critical buckling 

temperatures for the exponent p=3. As expected, porous materials conduct heat less 

efficiently, and therefore the critical temperature is higher than for perfect materials. 

A comparison of the nonlinear responses of perfect and porous materials is shown in 

Fig. 7, and Fig. 8. 

 

Figure 7: Comparison of perfect and porous materials for p=0.3 at 80% Fkr 
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Figure 8: Comparison of perfect and porous materials for p=3 at 70% Fkr 

 

 
 

4  Conclusion 
 

A finite element beam model has been developed to investigate the thermal 

buckling behavior of thin-walled FG beam type structure with porosities. The model 

utilizes finite element incremental equilibrium equations derived from the updated 

Lagrangian (UL) formulation, including a nonlinear displacement field of cross-

section that accounts for large spatial rotations. The analysis examines the influence 

of the power-law index, coefficient of porosity, and skin-core-skin thickness ratios on 

the critical buckling temperatures. The post-buckling bahaviour is also considered. 

The model’s accuracy has been validated comparing to comercial software shell finite 

element results. 
 

The critical buckling temperature decreases with an increase in the power-law 

index p due to a higher metal content in the cross-section. . In contrast, the critical 

buckling temperature increases with the porosity coefficient ρ as an imperfect beam, 

which is less thermally conductive, offers greater thermal stability compared to a 

perfect beam. This trend is observed for all boundary conditions examinated. As 

anticipated, beams with temperature-dependent material properties show a reduced 

resistance to thermal buckling. 
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