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Abstract 
 

This work introduces an improved shear-deformable beam formulation buckling 

analysis of laminated composite beam-type structures with thin-walled cross-sections. 

Each wall of a cross-section is assumed to be a thin symmetric and unbalanced angle-

ply laminate. The equilibrium equations of a straight beam element are derived by 

applying the virtual work principle within the framework of Lagrangian formulation, 

Hooke's law and the nonlinear displacement field of a thin-walled cross-section, 

which takes into account restrained warping and large rotation effects. Stress 

resultants are calculated by the Timoshenko–Ehrenfest beam theory for bending and 

the modified Vlasov theories for torsion. Shear coupling problems occurring at 

unbalanced laminated thin-walled cross-sections and arising from the shear forces-

warping torsion moment couplings are considered. The shear-locking occurrence is 

prevented by applying the Hermitian cubic interpolation functions for deflections and 

twist rotation, and the associated quadratic functions for slopes and warping. The 

effectiveness of the proposed geometrically nonlinear shear-deformable beam 

formulation is validated through the test problems. 
 

Keywords: thin-walled beam-type structure, unbalanced angle-ply laminates, beam 

finite element, buckling, large rotations, stability analysis. 
 

1  Introduction 
 

Load-bearing composite structures often consist of slender beam elements with thin-

walled cross-sections, increasing their complexity and susceptibility to deformation 
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instability or buckling under external loading [1-3]. These optimized structures can 

exhibit various forms of instability, including pure flexural, pure torsional, torsional-

flexural, or lateral deformation. Therefore, accurately determining the buckling 

strength, the limit state of deformation stability, is crucial in the design process. 
 

While analytical solutions exist for simpler cases [4], numerical approaches are 

often necessary. Several studies [5-9] have conducted geometric nonlinear analyses 

of composite beam structures, accounting for shear deformation effects. These studies 

particularly address bending-bending and bending-warping torsion coupling due to 

shear deformation, which is especially relevant for asymmetric cross-sections where 

the principal bending and shear axes do not coincide. 
 

In the previous study by the authors [10], geometrically nonlinear beam elements 

incorporating shear deformation effects were introduced for composite frames, though 

the focus was limited to symmetric and balanced laminates. The present work extends 

this approach by performing a linearized stability analysis of thin-walled beam-type 

structures, incorporating shear deformation effects and material inhomogeneity in the 

form of symmetric and unbalanced angle-ply laminates. The analysis is conducted 

exclusively using the authors' numerical model, with results compared against 

relevant reference solutions. 
 

2  Methods 
 

This formulation incorporates shear deformation effects by the Timoshenko–

Ehrenfest theory for non-uniform bending and the modified Vlasov theory for non-

uniform torsion. Additionally, this work introduces an enhanced shear-deformable 

beam formulation that accounts for bending-bending and bending-warping torsion 

coupling shear deformation effects [5-11]. These effects become significant in 

asymmetric cross-sections where the principal bending and shear axes do not coincide 

[12]. The beam member is assumed to be prismatic and straight, with external loads 

considered conservative and static. 
 

The geometric stiffness of the element incorporates the nonlinear displacement 

field of the cross-section [13, 14], which includes second-order displacement terms to 

account for large rotation effects. As a result, the incremental geometric potential of 

the semitangential moment is determined for internal bending and torsion moments, 

ensuring moment equilibrium at frame joints where beam members with different 

spatial orientations are connected [15, 16]. 
 

A locking-free beam element, known as a super-convergent element, is obtained 

through cubic interpolation for deflections and twist rotation, combined with an 

interdependent quadratic interpolation for slopes and the warping parameter. This 

approach effectively incorporates shear-deformable effects without requiring reduced 

integration techniques to prevent shear locking [17]. 
 

To determine properties of a laminated thin-walled cross-section, a particular 

numerical model is developed. The cross-sectional properties are weighted by using 

three distinct reference moduli [12]: the longitudinal modulus 11RQ  governing 
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properties related to the coupling between normal stress forces and normal strains, 

including area, moments of inertia, area moments, sectorial inertial moments, and 

sectorial area moments; the shear modulus 
66RQ  governing the torsional moment of 

inertia and shear coefficients; and the coupling modulus 
16RQ  which governs the 

coupling between the normal and shear strains. All cross-sectional properties are 

defined with reference to the midline of each branch of the cross-section. 
 

 
 

Figure 1: Lamina of an arbitrary orientation. 
 

It should be noted that θ represents the angle between the longitudinal axis (z-axis 

in this study) of the beam and the fibre direction in a particular ply, as shown in Figure 

1. A plane stress condition is assumed for all plies, i.e. 
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while 11Q , 22Q , 66Q , 12Q , 16Q  and 26Q  are the so-called transformed reduced stiffnesses 

[18]. For more details on the numerical procedure applied in this work are given in 

the author's previous papers [9, 10]. 
 

3  Results 
 

The abovementioned finite element formulation was implemented in a computer 

program called EIGEN v.9. The program has capabilities to deal with linearised 

stability problems of unbalanced symmetric laminated beam-type structures using the 

eigenvalue approach. The material used in the examples presented afterwards for 

verification is graphite-epoxy (AS4/3501), characterized by the longitudinal and 

transverse elastic moduli E1=144 GPa and E2=9.65 GPa, respectively, the shear 

modulus G21=4.14 GPa, and Poisson's ratio v12=0.3. In the first example, buckling of 

a cantilever column from Figure 2, of length L=150 cm and made of a rectangular 
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cross-section t×h =1×10 cm, is analysed. In this, two material configurations are 

considered: balanced and unbalanced symmetric laminate ones with [θ/–θ]2S and [θ]4 

stacking sequences, respectively. 
 

                 

 (a) (b) 
 

Figure 2: Cantilever column: (a) geometry; (b) buckling mode. 
 

 
 

Figure 3: Cantilever column: buckling load versus fibre orientation. 
 

In Figure 3, the variations of the buckling load vs. fibre orientation are presented. 

Buckling loads are obtained using a mesh configuration consisting of eight beam 

elements. As it can be seen, the most pronounced difference occurs at θ = 15°. At this 

fibre orientation, the unbalanced laminate, [θ]4, gives approximately 35 % lower 
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buckling load value than the balanced one, [θ/–θ]2S. In both cases, the results are in a 

good agreement with those obtained by the NX Nastran shell model. 
 

  

 (a) (b) 
 

Figure 4: Cantilever column, buckling load vs. number of beam elements 

convergence: (a) [15°/–15°]2S; (b) [15°]4. 
 

 
 

Figure 5: Cantilever beam under lateral load. 
 

 

 (a) (b) 
 

Figure 6: Cantilever beam, lateral-torsional buckling modes: (a) –F; (b) +F. 
 

A convergent study is carried out as well. The column is idealised using six 

different mesh configurations each consisting of one, two, four, eight, sixteen and 

thirty-two beam elements, and the obtained results are shown in Figure 4. In the figure, 

the obtained buckling load values are normalized by those obtained by the NX Nastran 
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shell model, i.e. Fcr=755.14 N and 509.55 N for the balanced and unbalanced cases, 

respectively. 
 

  

 (a) (b) 
 

Figure 7: Cantilever beam, buckling load vs. ply orientation (θ): (a) –F; (b) +F. 
 

 

 (a) (b) 
 

Figure 8: Cantilever column, [15°]4 stacking sequence, buckling load vs. number of 

beam elements convergence: (a) –F; (b) +F. 
 

In the second example, lateral-torsional buckling of a cantilever beam shown in 

Figure 5, subjected to a lateral force F is analysed. The beam has the same geometric 

characteristics as the column from the previous example with the [θ]4 unbalance 

stacking sequence. Both force directions are considered, positive and negative, with 

the positive direction being the one shown in the figure. The corresponding buckling 

modes obtained by the NX Nastran shell model are shown in Figure 6. The beam is 
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idealised by a mesh configuration consisting of eight beam elements, and the obtained 

results for the buckling load vs. fibre orientation are shown in Figure 7. As it can be 

seen, the highest buckling load occurs at θ=0° and 15° for the negative and positive 

force directions, respectively. As well, the obtained results are in a very good 

agreement with those obtained by the NX Nastran shell model. The results obtained 

in the convergence study for are presented in Figure 8, using the same mesh 

configurations as in the previous example and assuming the fibre orientation θ=15°. 

The results are normalized by those obtained by the NX Nastran shell model, i.e. 

Fcr=378.04 N and 1359.12 N for the negative and positive force directions, 

respectively. 
 

4  Conclusions and Contributions 
 

In this study, an improved geometrically nonlinear finite element formulation capable 

of performing the buckling analysis of shear-deformable beam-type structures, 

composed of unbalanced angle-ply laminated composites has been presented. Within 

the frame-work of the virtual work principle and the Lagrangian formulation, and 

applying the nonlinear displacement field of a thin-walled cross-section, which 

included the large rotation effects and restrained warping, the equilibrium equations 

of a straight composite beam element has been derived. Internal stress resultants have 

been calculated by the Timoshenko–Ehrenfest and modified Vlasov theories for 

bending and torsion, respectively. Hooke’s law has been assumed to be valid. 

Although displacements have been allowed to be large, strains have been assumed to 

stay small. To resolve the shear coupling problems occurring at non-symmetric thin-

walled cross-sections, an improved shear-deformable beam formulation considering 

the shear forces-warping torsion moment interactions occurring at beams composed 

of unbalanced thin angle-ply laminates has been introduced. The reliability of the 

proposed geometrically nonlinear beam formulation has been verified through two 

test examples, and the results obtained proved it. The shear-locking testing has also 

been performed running the model for different mesh configurations. 
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