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Abstract

This paper presents an innovative modeling approach to increase the accuracy and
computational efficiency of Finite Element (FE) models. The present method inte-
grates three key advancements: (1) one-dimensional elements, (2) higher-order struc-
tural theories, and (3) a node-dependent kinematics (NDK) framework, where each
FE node can possess an independent set of degrees of freedom. Based on the Car-
rera Unified Formulation (CUF), this framework facilitates the derivation of arbitrary
structural theories along with their governing equations and FE arrays. The NDK
approach enables spatially varying structural theories. The study focuses on free-
vibration analyses of civil engineering beam structures. This work identifies the most
efficient spatial distributions of high-fidelity models—those that minimize computa-
tional cost while meeting a predefined accuracy threshold. This paper proposes a
novel methodology for constructing finite element matrices by dynamically retriev-
ing the active degrees of freedom at each node. The results demonstrate the optimal
selection of generalized unknown variables.

Keywords: finite element method, Carrera unified formulation, node dependent kine-
matics, asymptotic-axiomatic method, Taylor polynomials, refined models



1 Introduction

The development of beam theories is a cornerstone of structural engineering, with
one-dimensional (1D) models often preferred over more complex three-dimensional
analyses. 1D models remain widely used due to their simplicity and efficiency. These
models find broad applications across engineering disciplines, especially in civil en-
gineering systems, including metallic and concrete beam frameworks. This section
briefly reviews key beam theories.

The Euler-Bernoulli beam model [1]] is commonly employed for analyzing slender,
isotropic structures but neglects shear deformation. In contrast, the Timoshenko beam
theory [2]] offers a more comprehensive approach by incorporating shear effects. Finite
Element (FE) software typically implements simple one-dimensional elements, each
with six degrees of freedom (DOF) per node—three translational and three rotational

[3].

Due to the inherent limitations of classical beam theories, researchers have devel-
oped more advanced models to address complex structural behaviours. For a compre-
hensive overview, Novozhilov’s seminal work [4] provides valuable insights into these
advancements. Additionally, Kapania and Raciti offer a thorough review of various
beam theories in their notable study [5]. One of the earliest models designed explicitly
for studying thin-walled structures was introduced by Vlasov [6], in which warping
functions were incorporated to capture the deformation accurately. This foundational
theory has since been applied and extended by numerous scholars, such as Mechab
et al. [[7]. Building upon these efforts, Levinson [8] proposed a beam theory that ac-
counts for warping effects while ensuring shear-free conditions on the lateral surfaces.
Wang and Li later employed Levinson’s theory to investigate free vibration problems

[9].

The selection of an appropriate structural theory is inherently dependent on the spe-
cific problem, as the necessity for higher-order generalized variables can vary across
the domain. This paper presents a novel methodology for identifying the most suitable
structural theories and determining their optimal spatial distribution for the analysis
of dynamic issues.

In previous work [[10]], a penalization technique was employed to identify the most
suitable structural theories. In contrast, this paper introduces a novel approach for
constructing beam finite element matrices in which each displacement component can
be associated with a distinct expansion function at the node level. This enables the in-
tegration of various polynomial-based theories within a unified formulation. The pro-
posed methodology leverages the combined strengths of the Carrera Unified Formula-
tion (CUF), the Node-Dependent Kinematics (NDK), and the Axiomatic-Asymptotic
Method (AAM). CUF [11] provides the general theoretical framework. NDK [12]] per-
mits the selection of different structural theories for each finite element node, offering
significant modeling flexibility. AAM [l10]] is used to assess the accuracy of structural
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Figure 1: Distributions of structural theories over a 1D mesh (a) and examples of Best
Theory Distributions (b)

models across different orders. It generates the Best Theory Diagram (BTD) [13]],
a two-dimensional plot that correlates structural model accuracy with computational
cost.

In a recent study, Petrolo and Carrera [14} [15] employed the AAM and the NDK
to determine optimal theory distributions across a two-dimensional mesh. In contrast,
the present work extends this methodology to the beam framework. Specifically, the
approach enhances AAM by enabling the structural theory to vary at the node level.
Figure|[I|presents an example of structural theory distributions over a one-dimensional
mesh, comparing a linear theory (N=1) with a fourth-order theory (N=4). Figure [I|(a)
illustrates three different NDK configurations, while Fig. [T[(b) depicts a possible Beam
Theory Distribution (BTD) obtained from multiple analyses. The structure of this
paper is as follows: (a) Section [2] introduces the theoretical foundations of the CUF
and NDK; (b) Section 3| derives the governing equations; (c) Section 4| details the
AAM with the NDK method; (d) Section [5] presents the numerical results; and (e)
Section [6] concludes the study.

2 Carrera Unified Formulation

Consider the beam structure illustrated in Fig. |2} In the context of a one-dimensional
structural theory, the unknown field variable is denoted as F.(x,z), defined over the
cross-sectional area A:

f@y,2) = Fr(z,2)f-(y),  7=12,..M (D
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Figure 2: Reference system for a generic beam

Here, Einstein’s summation convention is used. The generalized displacement field is
expressed as follows:

ug(x,y,2) = Fyr(x,2)ug, (y) with 7=1,... M,
uy(r,y,2) = Fy - (x,2)u,, (y) with 7=1,..., M, 2)
uy(z,y,2) = Fy-(x,2)u, (y) with 7=1,... M,

The expansion functions F,_;, F,, -, and F,,_, correspond to the generalized displace-
ments u,_, u,_, and u._, respectively. The parameters M,,,, M, , and M,,, represent
the number of expansion terms associated with each displacement component.

The FEM is employed to discretize displacements along the beam axis. Within this
framework, the NDK is introduced, allowing each node to be governed by a distinct
structural theory. The NDK also enables local mesh refinement, thereby extending
the applicability of this approach. By integrating the capabilities of CUF, FEM, and
NDK, the following formulation can be derived:

ug(,y,2) = Ni(y)F._(z,2)qp,, with i =1,..., N,
uy(2,y,2) = Ni(y)F,, (2, 2)q,,, with i=1,...,N, (3)
ux(x,y,z) = N;(y)F. (%, 2)q.,, with i=1,... N,

N; represents the shape functions, where the repeated subscript 1 implies summation
according to Einstein notation. The superscript i on F expansions denotes that each
finite element (FE) node can follow a distinct structural theory. N, refers to the num-
ber of nodes per element. In this context, a four-node Lagrange beam element (B4) is
employed [3]].



3 Governing equations and Finite Element matrices

The stress o, and strain, €, vectors are defined as follows:
T
o = { Ogz Oyy Ozz Oyz Ogz Ogy }
T
€ = { €xx Cyy €zz €yz €xz Cgpy } (4)
The geometric relationships linking strains to displacements are given by:
€ = Du @)

The matrix D contains the differential operators and is formulated under the assump-
tion of small displacements and rotations [[11]]. This work considers linear orthotropic
materials:

o = Ce (6)

The matrix C contains the material coefficients, as detailed in [3]].

The governing equations for dynamic analysis are formulated based on the princi-
ple of virtual displacements, as follows:

6Lint + 6Line =0 (7)

The internal work, 0 L;,,; is

0L = /V&ETUdV = /Véemam + 0€yyoyy + 0€,,0,,
+0€y,0y, + 0€,,0,, + 0€4y0,, AV (8)

where dV' = dxdydz. The work of inertial forces is

0L = / péulidV = / p(duy iy, + Ouyily, + duii,)dV 9)
1% 1%

By applying the displacement-strain relation, FEM approximation, and constitu-
tive equations, the governing equations for the three displacement components can be
obtained,

5qgjsj :Kuzustjiq{Z‘Ti + Kuzuysrjiq:g-ri + KUIUZSTjiqZTi + MquISTinmﬂ =0
5qysj :KUyquTjiqui + Kuyuysrinyﬂ- + KuyuZSTjiq,z,-i + Muyuysrjiqyﬂ =0
5(]sz :Kuqu;STj'inTi + KuzuySTjiqui + Kuzuzsm'iq,zﬂ + MUZUZSTj'iqZTi - 0 (10)

The Fundamental Nucleus (FN) of the stiffness and mass matrices consists of scalar
quantities, denoted as K, s-ji and M, ., s-ji, respectively. This formulation enables
the theory to be characterized by nine independent scalar parameters for each matrix.
The explicit expressions for the fundamental nuclei are not presented here but can be
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Figure 3: Assembly of the stiffness matrix, starting from the scalar fundamental nu-
cleus.

found in [[11}12]]. Assembly over all nodes and elements, combined with the adoption
of a harmonic solution, results in the formulation of an eigenvalue problem:

(—wM+K)U=0 (11)

The assembly process of the stiffness matrix, illustrated in Figure (3| can also be repli-
cated for the mass matrix.

4 Asymptotic-Axiomatic Method

The AAM (Automatic Assessment Method) evaluates the accuracy of a given struc-
tural theory through the following steps: (a) specifying input data, including geome-
try, boundary conditions, loadings, and material properties; (b) choosing target output
variables (e.g., stresses, displacements, or natural frequencies); (c) selecting finite el-
ement mesh; (d) computing the full expansion solution (e.g., all 45 terms active of the
fourth-order model) as the benchmark; (e) evaluating different combinations of NDK
models, by changing the dispositions of two structural theories; (f) quantifying the
accuracy of each reduced model via static or dynamic analyses.

B4
@ @ O O
TE4 TE4 TE1 TE1

TE4: 45 DOF per NODE
TE1: 9 DOF per NODE

Total DOF: 108

Figure 4: B4 element, a second-order (TE2) beam theory and a reduced model with a
truncated expansion

The following example demonstrates the assembly of finite element matrices for
an arbitrary reduced structural theory. Consider the four-node element illustrated in
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Figure 5: Assembly of the stiffness matrix

Fig. {] In this configuration, a fourth-order theory (TE4, N = 4) is applied at the first
two nodes, while a complete first-order theory (TE1, N = 1) is used at the remaining
nodes, resulting in a total of 108 degrees of freedom (DOF). Figure [5] displays the
global stiffness matrix K, which has dimensions 108 t2mes 108. For conciseness, the
procedure is described only for the stiffness matrix; however, the same methodology
applies to the mass matrix K as well. Each submatrix Kj; is partitioned into nine
components K, ,,;i, corresponding to the displacement variables. Due to the node-
wise variation in structural theory, each submatrix K;; (or M;;) may have different
dimensions, reflecting the differing number of terms at each finite element node. This
assembly procedure can consider different structural theories in each node and can
lead to the evaluation of best theory distributions over an FE mesh.

5 Numerical Results

This section presents the numerical results obtained using the proposed methodology.
The benchmark case study, adopted from [[16]], consists of a simply supported beam
with a length-to-height ratio (L/h) of 10. The cross-sectional dimensions are a = 0.38
(m), b=0.14 (m), and t = 0.02 (m), see Fig. [6| The beam is modelled as an isotropic
material with Young’s modulus E=72 (GPa), v=0.33, and p=2700 (Kg/m?). The first
five frequencies (Hz) are written below [16]:

15t: 29.46, 2™¢: 66.80, 374: 116.1, 4" 253.6, 5t 255.2.

Figure [/| show the mesh with ten finite elements. Thus, the total number of the
combinations is 2!° = 1024. In this example, only combinations of TE1 and TE4 are
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Figure 7: Finite element scheme for the multi-bay box beam

employed. When two different types of element are employed, the interface nodes
use always a first-ored theory. The error is calculated on the first ten frequencies.
Figure [§] (a) illustrates the best models for the present method. The boundary values
are D=1, corresponding to forty-five DOF per node and 1395 total DOF, and D=0.2,
corresponding to nine DOF per node and 279 total DOF. In Fig. [§](b), the number of
elements with a fourth-order theory are represented along the vertical axis. In partic-
ular, Fig. [0 illustrates three best models form taken from Fig. [8] In these examples,
TE1 theories are used for 2, 5, and 8 elements. The results show that the most critical
part is located in the centre of the beam.
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Figure 8: NDK results
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Conclusions

This paper introduces an innovative method for selecting optimal models along the
beam axis of the structures. Utilizing the enhanced unified formulation, which can
generate various theories, the proposed approach allows for a comprehensive study
of structures in multiple ways. A multi-box beam structure was analysed using a
patch strategy, where each finite element is assigned a structural model (e.g, TE1
or TE4), significantly reducing the number of possible combinations. In this way,
the capabilities of the present method have been demonstrated. In future works, this
methodology could be coupled with machine learning techniques.
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