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Abstract 
 

This study offers a very first inside into the influence of imperfections on buckling of: 

(i) single-layer auxetic, and (ii) two-layer (steel–auxetic), shell subjected to external 

pressure. For the first case: modulated eigen-affine imperfections show little 

difference between Poisson’s ratio of 0.3, and negative Poisson’s ratio of -0.5. The 

same proved to be true for a localised inward, Force-Induced-Dimple, (FID). 

Significant variations in the localised wall thickness of auxetic layer resulted only in 

minute drop of buckling pressure. The same became true for localised, large 

perturbation in the magnitude of negative Poisson’s ratio. 

For the case two, the wall thickness was made half steel and halve auxetic. The shell 

with Poisson’s 0.3 and -0.5, shows markedly larger sensitivity when compared with 

results obtained for Poisson’s equal to 0.3 in both layers, i.e., on a like-for-like basis 

this shell is less safe. This is true for both eigen-affine imperfections as well as for 

Force-Induced-Dimple. 
 

Keywords: mechanical metamaterials, auxetics, negative Poisson’s ratio, elastic-

plastic, external pressure, buckling, imperfections. 
 

1  Introduction 
 

This study refers to a subset of metamaterials known as auxetics. Auxetic materials 

can be broadly divided into natural auxetics and man-made. Intensive studies into 

engineered, man-made auxetics appear to have started about three decades ago. 

Auxetics expand in the lateral direction when stretched longitudinally, i.e., they bulge 
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when pulled. Also, under axial compression they become thinner in the lateral 

direction. Such behavior leads to a Negative Poisson’s Ratio, NPR. Materials and 

structures that demonstrate auxetic behaviour, and whose base material are metal - are 

defined as metallic auxetics and auxetic structures.  

 
Figure 1: Geometry of torispherical shell (Fig. 1a), and two-layer wall thickness 

(Fig. 1b). 
 

Properties of these novel materials open the possibility of wide practical applications 

across countless multiphysics fields, e.g., electromagnetics, acoustic stealth, optical 

communications, thermal camouflage, References [1-3]. These futuristic auxetics 

continue to attract a lot of research in structural mechanics, References [4-9]. Typical 

structural elements (plates, cylinders, cones), are considered here in various wall 

configurations. Auxetic metals with the Poisson’s ratio approaching, υ = -1.0, have 

been reported, Reference [4]. Also, auxetics having isotropic properties are reported 

in Reference [10]. Metallic auxetics show a similar stress-strain profile as in their base 

material. For example, auxetics derived from the base material being stainless steel 

show a similar stress-strain relationship (but only with nominal strain for up to 0.16), 

Reference [4].  
Auxetics are also actively examined in the area of composites, where the following 

research categories can be identified: (a) one-dimensional (auxetic fibres, yarns), (b) 

two-dimensional (auxetic ply, textiles), and (c) three-dimensional auxetic 

(composites), References [11-12].  

Anticipating arrival of auxetics to manufacturing of doubly curved shells – this study 

assesses how various imperfections would affect the buckling behaviour of these 

shells when subjected to quasi-static, uniform external pressure. A typical end-closure 

onto cylindrical pressure vessel is taken as an example, i.e., shell of torispherical 

geometry. This is entirely numerical study based on the existing FE-technology. 
 

2  Single-layer auxetic torisphere 

2.1 Perfect torisphere 
 

Consider torispherical shell with its geometry parameters shown in Figure 1a. Assume 

Rs/D = 1.0, the knuckle-radius-to-diameter ratio (r/D) = 0.1, and the (D/t)-ratio, D/t = 
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1000. Let the shell be fully clamped at the equatorial plane, and subjected to quasi-

static external pressure, p. Its material properties being given by the Young’s modulus 

E = 210.0 GPa, and the yield point of material, σyp, equal to 350.0 MPa. The material 

of analysed shells is assumed to be isotropic. 
 

 

 Bosor5 Abaqus 

ν Indic(-2) Indic(0) (SAX2-Riks) (S8R) (S8R-Riks) 

+0.30 0.122(17) 0.136(coll) 0.135(coll) 0.122(17) 0.135(coll) 

-0.50 0.122(15) 0.128(coll) 0.128(coll) 0.123(16) 0.128(coll) 

-0.75 --- 0.132(coll) 0.131(coll) --- 0.131(coll) 

-0.90 --- 0.133(col) 0.133(coll) --- 0.133(coll) 

Table 1: Comparison of failure pressures (bifurcation or collapse) for a single layer 

torisphere. Note: numbers in brackets refer to number of circumferential waves at 

bifurcation; coll ≡ axisymmetric collapse; D/t = 1000, Rs/D = 1.0, r/D = 0.10, E = 

210 GPa, σyp = 350MPa; 
 
 

Under external pressure the above dome can fail either through asymmetric 

bifurcation buckling with a number of circumferential waves or by axisymmetric 

collapse. The following two software codes, capable of estimating magnitudes of both 

failure mechanisms, are used, i.e., Abaqus – Reference [13] and Bosor5 – Reference 

[14]. Linear elastic, perfectly plastic modelling of the shell’s material is adopted in 

both types of analyses. The range of the Negative Poisson’s Ratio, NPR, investigated 

varies between υ = +0.3 and υ = -0.9. Table 1 provides the results for the NPRs = 

+0.30, -0.50, -0.75, and -0.90.  

In the FE code Abaqus, prediction of the bifurcation mode is based on the use of 

8-node shell element S8R. Convergence of results was secured here for 160 elements 

along the meridian and 240 elements along the circumference. Collapse mode was 
 
 

 

 
Figure 2: Load-apex deflection curve as obtained from Abaqus and Bosor5 codes. 

Note: pyp ≡ first yield pressure. 
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computed using shell elements, S8R, as well as axisymmetric shell element, SAX2. 

Eighty equally spaced SAX2 along the meridian secured the convergence. Bosor5 

required 140 mesh points along the meridian to obtain converged solutions. 

Predictions of magnitudes of various failure modes given by both codes are the same, 

as seen in Table 1. Also, the eigenmode given by both codes is the same, i.e., n = 17 

waves in hoop direction for the case of ν = +0.3. For the case of ν = -0.5 they are 15 

and 16, respectfully. Magnitudes of axisymmetric collapse pressure are identical for 

axisymmetric analyses (SAX2), and for 2D analyses using shell elements S8R. 

Estimates of collapse loads using Bsosor5 Indic0-option are nearly the same as those 

given by Abaqus code. It is worth noting here that the estimation of bifurcation 

buckling by Abaqus is not universally valid/recommended – as mentioned in the 

code’s manuals. Also, the load versus apex deflection curves are the same for up to 

the collapse level as seen in Figure 2. The Riks option in the FE code Abaqus allows 

to trace the apex deflection beyond the collapse. But from practical point this is 

irrelevant since there is no residual strength beyond the collapse pressure, and the shell 

is destroyed as seen in published results of experiments. 

 

 
Figure 3: Plot of bifurcation buckling and collapse pressure versus Poisson’s ratio, υ. 

Note: No. of hoop waves at bifurcation shown in brackets. 

 

Figure 3 plots values of asymmetric bifurcation buckling and axisymmetric collapse 

for Poisson’s ratio between υ = +0.30 and υ = -0.90. It is seen here that bifurcation 

buckling remains the controlling mechanism of failure between υ = +0.30 an υ ≈ -

0.72. Axisymmetric mode of failure is active for: -0.90 ≤ υ < 0.72. The insert in Figure 

3 depicts eigenmode for υ = -0.50 with n = 16 circumferential number of waves (as 

seen from above). 
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2.2 Imperfect torisphere 
 

Unavoidable imperfections in shape of externally pressurised domes (hemispheres, 

spherical caps, torispheres, ellipsoids, etc.), can severely affect the magnitude and 

mechanism of failure of these shells, e.g., References [15-18]. Over the last several 

decades a lot of know-how has been accumulated regarding this topic. This has led to 

the establishment of design codes, e.g., References [19-22]. Arrival of auxetic shells 

brings new issues in imperfection sensitivity of buckling pressure. Apart from initial 

shape deviation from perfect geometry, the influence of imperfect wall thickness, 

associated variability of NPR, have to be assessed in order to quantify how they 

influence the buckling strength. 

In what follows, some answers to the above issues are examined through selective 

parametric studies. 
 
 

δ/t 
υ = +0.30 υ = -0.50 

𝑝
𝑝𝑏𝑖𝑓

⁄  

0.25 0.66 0.69 

0.5 0.44 0.51 

1.0 0.35 0.31 

1.5 0.30 0.31 

2.0 0.28 0.30 

Table 2: Comparison of sensitivity of buckling pressure to Force-Induced-Dimple 

imperfection for υ = +0.30 and υ = -0.50 in a single layer auxetic torisphere. Note: 
𝛿

𝑡
≡ magnitude of inward dimple. 

 

 
 

 

 
Figure 4: Imperfection sensitivity of buckling pressure for a single layer auxetic 

torisphere. Note: FID ≡ Force Induced Dimple imperfection at s/stot = 0.70; 
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2.2.1 Initial shape imperfections 
 

Several different approaches have been used in the past, to estimate the sensitivity of 

buckling pressure to initial geometric imperfections, e.g., eigenmode affine, 

increased-radius lower bound, and local inward dimple, Reference [16]. Figure 4 

depicts results for some initial shape imperfections being studied in the past. It has 

been, for example, customary to adopt the initial shape deviations in the form of 

modulated eigenmode. The eigenshape with n = 17, was taken as a possible 

imperfection for the case υ = +0.30. The eigenmode with n = 16 was taken for υ = -

0.50. The amplitude of imperfection, δ/t, was varied between δ/t = 0 and δ/t = 2.0. 

Results seen in Figure 4 indicate that ‘the sensitivity profile’ remains comparable for 

both υ = +0.30 and υ =-0.59. Only for small values of the (δ/t)-ratio the NPR case 

offers smaller reduction of buckling pressure. Another form of analysed geometrical 

deviation from perfect geometry was a localised inward dimple created by a 

concentrated force – known in the literature as Force-Induced-Dimple, FID. For this 

case a much worse reduction of buckling pressure was recorded than for the 

modulated eigenshape. Figure 4 depicts results for, υ =-0.50, and Table 2 gives 

selected results for υ =+0.30. It is seen here that there is no great difference between 

both cases.  
 

 

Figure 5: Illustration of variable wall thickness on inner side. 
 
 

2.2.2 Imperfect wall thickness and variable NPR 
 

Assume that the wall thickness of the inner side of the auxetic layer is imperfect since 

the outer side is, eventually, to be attached to the ‘nearly perfect metallic layer’. 

Assume that there are N-segments of piece-wise constant wall thicknesses as 

illustrated in Figure 5, and each of meridional length is, si = stot/N, where stot/D = 
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0.572. The magnitude of wall thickness within each segment is allowed to be varied 

by, Δti = ±t/2. Comparison is provided between the NPR-auxetic layer, υ = -0,50, with 

a steel layer with Poisson’s ratio, υ = +0.30. Detailed results for N = 2 are given in 

Table 3. It is seen that the largest dimensionless buckling pressure drop is to 0.55 for 

υ = +0.30, and to 0.60 for υ = -0.50. Hence for this case the auxetic shell can support 

larger pressure, i.e., the buckling pressure is less sensitive to a similar change in wall 

thickness. 

 

υ 

𝑝
𝑝𝑏𝑖𝑓

⁄  

configuration 

1-2 2-1 1-0 0-1 2-0 0-2 0-0 1-1 2-2 
-0.50 0.60(18) 1.07(13) 1.0(15) 1.47(13) 1.0(15) 0.60(18) 1.0(15) 1.47(13) 0.60(18) 

+0.30 0.55(20) 1.0(13) 0.98(17) 1.48(14) 0.98(17) 0.56(20) 1.0(16) 1.48(14) 0.55(20) 

Table 3: Buckling pressure for piece-wise wall thicknesses – comparison of results 

between NPR, υ = -0.50, and Poisson’s, υ = +0.30. Note: The first digit in 

configuration denotes segment one (starting from apex); The second one denotes 

segment no. 2 (ending at clamped edge). Also: ‘1’ ≡ 1.25t, ‘2’ ≡ 0.75t, ‘0’ ≡ t. 

 

Another imperfection might be associated with non-perfect distribution of 

magnitude of NPR. Hence two types of structural response to variation of NPR were 

also carried out. In the first one two different values of NPR were assigned to spherical 

cap and knuckle, i.e., υ = -0.90 (s/stot ≡ [0.0, 0.81]) for spherical cap, and υ = - 0.45 

(s/stot ≡ (0.81, 1.0]) for the knuckle. The computed ratio of (p/pcoll), was 1.0. This 

means that the reduced value (50%), of NPR over sizeable length of the meridian did 

not reduce the magnitude of collapse pressure. At the next stage the values of NPRs 

were switched between segments, i.e., υ = -0.45 (s/stot ≡ [0.0, 0.81]), and υ = - 0.90 

(s/stot ≡ (0.81, 1.0], knuckle). In this case, the computed ratio of (p/pcoll), was 0.97. 

Again, the computed drop of the collapse pressure is very small. 
 
 

s/stot 
[0.0-

0.1] 

[0.1-

0.2 

[0.2-

0.3] 

[0.3-

0.4] 

[0.4-

0.5] 

[0.5-

0.6] 

[0.6-

0.7] 

[0.7-

0.8] 

[0.8-

0.9] 

[0.9-

1.0] 

υ -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 -0.45 
𝑝

𝑝𝑐𝑜𝑙𝑙
⁄  1.0 1.0 1.0 1.0 1.01 1.01 1.01 0.98 1.0 1.0 

Table 4: Collapse pressures for localised NPR, υ = -0.45, in ten segments of 10% 

meridional arc length, s/stot. Note: ‘0.0’ in segment, [0.0-0.10], denotes apex. The 

last column on the right corresponds to the segment adjacent to the clamped edge. 
 

 
 

The full length of the meridian was divided into ten segments of equal length as 

another way of assessing sensitivity of collapse pressure. The values of NPR, υ = -

0.45, were assigned to each segment in turn while the remaining parts of the meridian 

had, υ = -0.90. Results for all ten segments are given in Table 4. It is seen here that 

over large portion of the meridian there is no reduction in magnitude of collapse 

pressure. The only reduction was recorded for the segment spanning, s/stot = [0.7-0.8] 

with recorded drop to 0.98. Again, this is a very small reduction in collapse pressure 

for a 50% change in NPR’s magnitude. 
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3  Two-layer auxetic torisphere 
 

One of possible application of metamaterials analysed here is a two-layer shell 

subjected to eternal pressure. As the auxetic material is to be porous, the practical 

arrangement would require the external layer to be from conventional steel supported 

on inside by an auxetic layer (as illustrated in Figure 1b). Consider the previous 

torisphere’s configuration with the only one exception regarding the composition of 

the wall thickness. Divide the full thickness, t, into the outer layer having the 

thickness, t/2, and the inner auxetic layer having the same thickness, i.e., t/2. Two 

types of initial shape imperfections were adopted in order to check the response of 

buckling pressure. They were: eigenmode affine shape deviation from perfect 

geometry, and inward, localised dimple positioned at s/stot = 0.70. Results are shown 

in Figure 6, where comparison is given with the response to steel only shell (i.e., with 

υ = +0.3). It is seen here that the auxetic shell reduced the buckling load by larger 

amount than the corresponding shell with, υ = +0.30. 

 

 
Figure 6: Imperfection sensitivity of buckling pressure for a two-layer auxetic 

torisphere. Note: FID ≡ Force Induced Dimple imperfection at s/stot = 0.70; 
 

 

4  Conclusions 
 

This study reveals different sensitivity of buckling pressure to imperfections for a 

single layer, auxetic shell, and different for a two-layer wall. 

The initial shape imperfections in a single, auxetic wall follow a similar ‘sensitivity 

trend’ as in a dome made from steel, only. Also, magnitudes of pressure drop remain 

nearly the same. Some large perturbations in the wall thickness and in values of NPRs 

resulted only in minute reduction of buckling pressure. This is a significant 

observation as it would help manufacturing of auxetic layers aimed at doubly curved 

shells. Hence wider studies of this would be highly desired. 

Initial shape imperfections in a two-layer wall [50%-steel, 50%-auxetic], substantially 

reduce the buckling pressure for both eigen-affine and for inward Force-Induced-
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Dimple profiles when compared with [50%-steel, 50%-steel], i.e., for a like-for-like 

configuration. Again, a definitive conclusion will require a wider/comprehensive 

study.  
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