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Abstract

This work investigates the crack propagation and failure behavior of quasi-brittle ma-
terials by combining two different numerical models. The critical region, where dam-
age or cracks may occur, is modeled using three-dimensional (3D) bond-based peri-
dynamics (PD). The remaining elastic region is modeled with one-dimensional (1D)
higher-order beam elements based on the Carrera Unified Formulation (CUF). The
coupling between the two models is achieved through Lagrange multipliers. An im-
proved damage model is proposed in PD to account for the cohesive effects of quasi-
brittle materials. In addition, an implicit displacement control method is employed in
PD to improve convergence for quasi-brittle failure. The proposed approach is vali-
dated through comparison with experimental data. The results show that the model
can accurately capture crack propagation and load–displacement curves in an efficient
manner.
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1 Introduction

Quasi-brittle materials, such as concrete and composites, are widely used in engineer-
ing structures. A reliable numerical method is essential to accurately predict crack
propagation and material failure. Over the past decades, many numerical models have
been developed based on classical continuum mechanics. However, these models still
face several limitations. For example, the smeared crack model suffers from mesh-
dependence [1], while the discrete crack model often requires re-meshing during crack
growth [2].

Peridynamics (PD), first introduced in [3], is a promising computational method
to overcome the limitations of classical continuum mechanics. In PD, the continu-
ous body is discretized into a set of particles, and each particle interacts with others
within a certain horizon radius δ. The governing equations are written in an integro-
differential form, which allows PD to describe discontinuous displacement fields. PD
has been widely applied to simulate various complex failure processes [4].

Apart from the PD formulation itself, accurately modeling damage and failure in
quasi-brittle materials remains a challenge. A critical bond-stretch-based criterion was
proposed in [5] to describe the failure of brittle materials. However, unlike brittle ma-
terials, quasi-brittle materials exhibit significant strain-softening behavior, indicating
that cohesive effects exist on crack surfaces after microcracks form. To address this,
many studies have proposed damage models in PD that can account for the cohesive
effect when simulating the failure of quasi-brittle materials [6, 7].

However, due to its non-local nature, PD often leads to large, sparse, and non-
banded system matrices, which result in high computational cost. In addition, the
boundary conditions in PD models are difficult to apply, and surface effects may ap-
pear because of the non-local interactions. To improve computational efficiency, the
finite element method (FEM) can be used in the elastic domain and near the bound-
aries, while PD grids can be applied in critical regions where damage, cracks, or
discontinuities are expected.

Several coupling techniques have been proposed, such as overlapped zone-based
methods [8] and shared node-based methods [9]. In [10], a three-dimensional (3D)
PD model was coupled with higher-order one-dimenasional (1D) finite elements. This
approach improves computational efficiency, as 1D elements are implemented within
the Carrera Unified Formulation (CUF) [11], which allows quasi-3D accuracy through
expansion functions in the beam model. A similar approach was used in [12] for frac-
ture analysis, where 3D PD was coupled with higher-order beam models. However,
the cohesive effect was not considered in that study.

Given the above context, this work proposes a damage model, inspired by [13,14],
for the failure analysis of quasi-brittle materials in PD. A higher-order beam model
is also coupled in the elastic domain, as done in [10], to reduce computational cost.
Additionally, an implicit displacement control method is adapted from classical me-
chanics to enhance stability in the softening regime.
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2 Bond-based peridynamic theory

The bond-based peridynamic (BBPD) model was the first PD formulation proposed
in [3]. In the framework of PD, a continuum solid is represented by a collection of
material particles with infinitesimal volume dV . Each particle at position x interacts
with other particles x′ located within its horizon Hx, which is defined by a radius δ.

The relative position between two particles is given by the vector ξ = x′ − x,
while the relative displacement is denoted by η = u′ − u, where u′ and u are the
displacement of particle x′ and x, respectively.

The interaction force between two particles is described by a pairwise force den-
sity function f . The static equilibrium equation of a particle x is governed by the
following integro-differential equation:∫

Hx

f(ξ,η)dVx′ + b(x) = 0 (1)

where b(x) is the body force density vector.
For isotropic elastic materials, the pairwise force density can be expressed as [3]:

f(ξ,η) = cs
ξ + η

|ξ + η|
(2)

with

s =
|ξ + η| − |ξ|

|ξ|
(3)

c =
12E

πδ4
for 3D case (4)

where s is the bond stretch, c is the micro-modulus representing the bond stiffness,
and E is the elastic modulus.

The PD domain is discretized into a grid of material points or nodes. After dis-
cretization, the static equilibrium equation becomes a summation over the family
nodes of each point. For node xi, the discrete form is:

NHi∑
j=1

f ijVj + bi = 0 (5)

where NHi
is the number of family nodes of node xi and Vj is the volume of particle

xj .
In a homogeneous material, and after linearization, Eq. (5) can be written in a

matrix form:
NHi∑
j=1

C(xj − xi)(uj − ui)Vj + bi = 0 (6)

with
C(ξ) = c

ξ ⊗ ξ

|ξ|3
(7)
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By multiplying both sides of Eq. (6) by the volume Vi, the equilibrium equation
becomes suitable for finite element analysis:

NHi∑
j=1

C(xj − xi)(uj − ui)ViVj + biVi = 0 (8)

or
KPDUPD = F PD (9)

3 Higher-order beam theory

The Carrera Unified Formulation (CUF) [11] is a framework that allows the genera-
tion of higher-order beam theories with three-dimensional accuracy and a significant
reduction in computational cost. In the CUF framework, the 3D displacement field of
a beam model can be written as:

u(x, y, z) = Fτ (x, z)uτ (y), τ = 1, 2, ...,M (10)

where uτ (y) is the displacement vector; Fτ are the cross-sectional expansion func-
tions; uτ is the generalized displacement vector; M is the number of terms in the
expansion function; The subscript τ indicates the summation. Common choices for
the expansion functions include Taylor and Lagrange polynomials.

The finite element method (FEM) can be used to approximate the generalized dis-
placement vector. Therefore, Eq. (10) can be rewritten as:

u(x, y, z) = Fτ (x, z)Ni(y)uτi, i = 1, 2, ..., Nn (11)

where Nn is the number of nodes for each beam element; i indicates the summation;
Ni is the shape function in 1D elements; uτi is the unknown nodal vector.

The governing equations of the CUF-based model can be derived using the Princi-
ple of Virtual Displacement (PVD). Details are available in [11]. For static analysis,
the governing equation can be expressed as:

Kτsijuτi = Fsj (12)

where Kτsij is the 3× 3 fundamental nucleus that can be used to assemble the global
stiffness matrix through the looping on four indexes τ , s, i, and j. Moreover, the above
governing equation can be compacted as follows:

KFEUFE = F FE (13)

To reduce the high computational cost of peridynamic modeling caused by its non-
local nature, a CUF-based 1D beam model can be coupled with 3D PD. To enforce the
continuity condition at the interface between the PD and 1D finite element domains,
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Lagrange multipliers are introduced following the method in [10]. The matrix form of
the coupled system is: [

K BT

B 0

] [
U
λ

]
=

[
F
0

]
(14)

where B is the coupling matrix and K is the global stiffness matrix. U is the unknown
displacement vector and λ is the unknown Lagrange multiplier vector.

4 Improved damage model for quasi-brittle materials

The bond stretch criterion, introduced in [5], is a common approach for modeling
damage, crack propagation, and failure in brittle materials. According to this criterion,
a bond is considered broken when the stretch exceeds a critical value sc. However,
this approach may not accurately represent the damage mechanism of quasi-brittle
materials, which typically exhibit strain-softening behavior.

As discussed in [6], the damage model in peridynamics is conceptually similar to
the stress–strain relationship in classical continuum mechanics, where the pairwise
force corresponds to stress and the bond stretch corresponds to strain. Based on this
idea, a new damage model with a softening law is proposed to replace the traditional
linear damage model.

Figure 1 illustrates the proposed model, which is referred from the constitutive
laws from [13, 14]. In this model, the bond force increases linearly with stretch until
the tensile limit st0 is reached. Beyond this limit, the bond enters a degradation stage
governed by an exponential softening function. The expression of the proposed model
is given as:

f =

{
cs, s ≤ s0

fmax exp
(

s0−s
su−s0

)
, s > s0

(15)

where fmax = cs0 is the maximum bond pairwise force when the stretch achieves the
limit s0. su is the ultimate stretch in the case of linear softening and can be computed
using the tangent to the exponential softening curve computed as the peak point.

Following the method in [6], it is assumed that the normal stress acting on a plane
reaches the tensile strength ft when all bonds crossing the plane are stretched to s0.
Based on this assumption, the stretch limit s0 in the 3D case can be analytically deter-
mined by:

ft =

∫ δ

0

dz

∫ 2π

0

dθ

∫ δ

z

dξ

∫ cos−1(z/ξ)

0

cs0 cosϕξ
2 sinϕdϕ (16)

and the solution is:
s0 =

6ft
πcδ4

=
ft
2E

(17)

The degradation curve is based on an energy equivalence principle, allowing the
use of softening curves obtained from experiments or other numerical models. In
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Eq. (15), the ultimate stretch su is a key parameter related to the fracture energy
Gf . According to [6], the energy dissipated by all bonds crossing the fracture surface
during the degradation process is assumed to equal ξwd, in which wd is the area under
the degradation curve shown in Figure 1. The total energy dissipated per unit fracture
area is equal to the fracture energy Gf . Thus, wd can be determined analytically in 3D
through the following integral:

Gf =

∫ δ

0

dz

∫ 2π

0

dθ

∫ δ

z

dξ

∫ cos−1(z/ξ)

0

wdξ
3 sinϕdϕ (18)

and the solution is:
wd =

5Gf

πδ5
(19)

Then, the ultimate stretch is obtained by:

su =
wd

fmax

+ s0 (20)

Figure 1: The proposed quasi-brittle damage model in BBPD

The above damage model provides a more realistic description of quasi-brittle fail-
ure and enables the incorporation of material fracture energy in the PD framework.

5 Numerical example

In this section, an experimental benchmark involving a three-point bending (TPB) test
on a notched concrete beam is used to verify the peridynamic model with the proposed
damage formulation. The experiment was reported in [15], and the corresponding
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setup is shown in Figure 2. The load is applied at the top mid-span. In the numerical
model, the load is applied through displacement control, with a maximum value of
0.5 mm. Therefore, a displacement control method, similar to the Newton–Raphson
approach, is used to solve the nonlinear problem. The material properties used in this
example are listed in Table 1.

225 225

100
50

5

F

100

Figure 2: Geometry and boundary conditions of the notched TPB concrete beam
(Unit: mm)

Properties Symbols Units Values

Young’s modulus E GPa 20

Poisson’s ratio v - 0.25

Tensile strength ft MPa 2.4

Fracture energy Gf N/m 90

Table 1: Material properties for notched TPB concrete beam

To reduce computational cost, only the mid-span region is modeled using 3D PD,
while the remaining regions are modeled using CUF-based beam elements, as shown
in Figure 3. Since the crack is expected to localize in the notched mid-span region,
the proposed damage model is applied only in the 3D PD region. A linear elastic
material model is used for the remaining parts. The coupling approach between PD
and CUF-based beam elements follows the method described in [].

Table 2 lists the three numerical models used to study the influence of PD grid
spacing. A smaller grid spacing leads to a larger number of PD particles. The horizon
radius δ is taken as three times the grid spacing. In all models, eight second-order
CUF-based beam elements are used.

The crack propagation of Model 1 is shown in Figure 4. A vertical crack initiates
from the bottom notch and propagates upward. The damage index φ for each particle
is shown at different loading steps. This index represents the percentage of broken
bonds around a particle. At a displacement of 0.1 mm, which corresponds to the peak
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Figure 3: PD region and CUF-based beam element assignment

Model No. ∆x (mm) δ (mm) PD DoFs FEM DoFs

Model 1 5 15 29,232 1,530

Model 2 2.5 7.5 216,972 1,530

Model 3 4 12 52,884 1,530

Table 2: Model information for notched TPB concrete beam

load, the damage is still limited. After that point, the crack grows rapidly and becomes
clearly visible.
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Figure 4: Crack propagation and damage index φ evolution of Model 1 (Sacle fac-
tor=50)

The load–displacement curves at the mid-span for all three models are shown in
Figure 5, along with experimental data for comparison. All numerical models show
identical linear stiffness, which agrees well with the experimental results. The peak
loads and post-peak softening behavior of the models also fall within the experimental
range. Slight variations in peak loads and corresponding displacements are observed.
These differences are likely due to slight variations in the location of the PD parti-
cles used to extract displacement. It is also evident that reducing the grid spacing
significantly increases the number of degrees of freedom (DoFs), but the numerical
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performance remains similar across all models.
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Figure 5: Comparisons of experimental and numerical load-displacement curves

6 Conclusions

This work proposed an improved damage model and implemented it in an existing
PD–FEM coupled framework for the failure analysis of quasi-brittle materials. The
coupling was achieved between 3D PD grids and CUF-based 1D finite elements using
Lagrange multipliers. In the proposed damage model, bond stretch serves as the cri-
terion for damage initiation, while the subsequent degradation is considered based on
an energy-equivalence principle. With this model, the coupled PD–FEM system can
successfully capture the crack propagation in a notched concrete beam under three-
point bending. In addition, it accurately reproduces the structural load–displacement
response, showing good agreement with experimental results. Moreover, the model
shows consistent results across different grid sizes, confirming its numerical robust-
ness.
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