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Abstract

The co-rotational formulation offers a fast and numerically stable pseudo-linear ap-
proach for solving structural problems involving large displacements and small strains.
In this study, two well-established co-rotational formulations, Crisfield’s and Felippa’s,
are rewritten using a unified notation to enable a direct comparison for 3D solid finite
elements. Felippa’s consistent formulation targets beams and shells, while Crisfield’s
approach includes 3D solids but is not fully consistent. Despite different initial appear-
ances, the deformational displacement vectors and internal force vectors are shown to
be mathematically identical, guaranteeing the same displacement response. However,
the tangent stiffness matrices differ: Crisfield’s omits complex terms, resulting in
slower convergence, whereas Felippa’s consistent version is expected to require fewer
Newton–Raphson (NR) iterations. Additionally, this study presents easy-to-implement
matrix forms of Crisfield’s matrix A and Felippa’s spin-fitter matrix G, for 3D solid
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elements with a rotation matrix obtained via polar decomposition. This work lays the
foundation for a forthcoming paper on a new consistent co-rotational formulation for
3D solid elements in a simple matrix form for efficient nonlinear analysis.

Keywords: co-rotational formulation, finite element method, solid finite elements, geo-
metrically nonlinear analysis, consistent tangent stiffness matrix, polar decomposition,
spin-fitter matrix

1 Introduction

The co-rotational (CR) formulation is a widely used technique for solving geometrically
non-linear (NL), small-strain structural problems in a pseudo-linear manner. In this
approach, a local coordinate system (LCS) is rigidly attached to each finite element so
that it undergoes the same translation and rotation. This allows the element’s rigid body
motion to be separated from its total displacements based on the position of the LCS
relative to the inertial global coordinate system (GCS). The remaining deformational
displacements, responsible for strain, are assumed to be small and are therefore handled
using the linear small-strain theory within the element. As such, CR formulation can
be regarded as a filter of rigid body motion.

The concept of the CR technique in the finite element method (FEM) was introduced
in the early 1970s by Wempner [1] and Belytschko [2]. A significant advancement came
with the element-independent co-rotational (EICR) procedure proposed by Rankin
and Brogan [3], which has since become a standard. A key advantage of the EICR is
that it operates on the precomputed linear element stiffness matrix without modifying
Gauss-based element kernels. This allows for the reuse of linear elements, including
any enhancements, in geometrically NL analyses.

Over the past four decades, the EICR approach has been successfully extended
from beam and shell finite elements (FEs) to 2D and eventually 3D solid FEs, driven
by growing computational capabilities. The EICR formulation for 3D solid FEs was
established by Crisfield and Moita [4, 5, 6]. Although their formulation is described as
consistent, the tangent stiffness matrix is artificially symmetrized due to the neglect of
higher-order terms arising in its derivation. This simplification has been widely adopted,
as the resulting inconsistent tangent stiffness matrix still provides good convergence.
However, a truly consistent tangent stiffness matrix ensures optimal convergence, as
it corresponds to the Hessian of the strain energy and is therefore symmetric [7, 8].
The approach to compute the truly consistent tangent stiffness matrix was presented by
Felippa and Haugen in [9, 10], though their work focused on beam and shell FEs.

The objective of this paper is to provide a clear and complete mathematical descrip-
tion of Crisfield’s and Felippa’s CR formulations, specifically for 3D solid FEs. Both
approaches are reformulated using a unified notation, allowing for direct identification
of similarities and differences. The formulations are expressed in a ready-to-implement
matrix form, with emphasis on the interpretation of the mathematical expressions used.
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This work extends the earlier conference paper [11], which compares NL and CR
algorithms for static analysis and demonstrates the numerical advantages of the CR one.
In this paper, all computations are performed per element. While EICR formulations
can incorporate material nonlinearity, a linear-elastic material model is used in the
element kernel for simplicity.

2 Crisfield’s co-rotational formulation

The Crisfield’s CR formulation for solid finite elements was established by Crisfield
and Moita and is well explained in [6].

2.1 Rotation matrix

The origin of the LCS can be arbitrarily determined because rigid body translation does
not influence internal force computation. Crisfield and Moita have chosen node 1 of
the element as the origin of the LCS. The rotation matrix is computed via the polar
decomposition of the deformation gradient computed at the element centroid.

By definition, polar decomposition F = RU is a mathematical tool that decom-
poses a square matrix F , representing the deformation gradient, onto an orthogonal
matrix R, representing the rotation matrix, and a symmetric matrix U , representing
the right stretch tensor.

The mathematical expression for the rotation matrix can be derived as follows.

F⊤F = (RU )⊤(RU ) = U⊤R⊤RU = U⊤U = UU , (1)

where the relations R−1 = R⊤ and U = U⊤ were used. From the derivation of
Eq. (1), the relation for the stretch tensor follows as

U = (F⊤F )
1
2 , (2)

and substituting Eq. (2) into the polar decomposition definition gives the relation for
the rotation matrix

R = FU−1 = F (F⊤F )−
1
2 . (3)

Such a computed rotation matrix exactly represents the rigid body rotation at the
element centroid, and its computation is independent of element node ordering. How-
ever, the linear triangular FE in 2D and the linear tetrahedral FE in 3D are the only
solid elements with constant deformation gradient. All the other FEs can have different
deformation gradient and therefore also a different rigid body rotation at their various
points, e.g., in nodes or Gauss points. Intuitively, if a single rotation matrix shall
represent the rigid body rotation of the FE, the rotation matrix computed at the element
centroid can be assumed to be the best possible approximation of the true mean rigid
body rotation of the whole element.
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Crisfield and Motia propose the polar decomposition of the deformation gradient
computed in the element centroid for the rotation matrix computation because it
enforces the zero local spin at the element centroid, which, as originally proposed in
[12] for a 2D case, satisfies the large strain patch test.

In [6], the 3× 1 local spin vector, which is set to zero, is defined as

Ω = A⊤u = 0, (4)

where A is a 3N×3 matrix which is computed from initial coordinates and is therefore
constant during NR iterations. The computation of this unnamed matrix is partly shown
in [13, 6], but only for 2D solid elements. To the knowledge of the authors of this paper,
the computation of the A matrix, labeled as BS in [14], has never been published for
3D solid elements simply in a matrix form for the ease of implementation.

In 3D, the Eq. (4) takes the following form

Ω =

 ∂wo

∂y0
− ∂vo

∂z0
∂uo

∂z0
− ∂wo

∂x0
∂vo
∂x0

− ∂uo

∂y0

 = A⊤u =

00
0

 , (5)

where each row represents a zero rotation with respect to the local axes x, y and z, and
e.g. local displacement at the element centroid in the direction of the x axis is

uo =
N∑
i=1

hi,o ui, (6)

where hi,o is a shape function of the i-th node evaluated at the element centroid and
ui, as part of the vector u, is a nodal displacement of the node i in the direction of the
local x axis.

Then the 3N × 3 matrix A can be written in a matrix form as

A =


−spin(B1)

· · ·
−spin(Bi)

· · ·
−spin(BN)

 =
[
spin(B1) · · · spin(Bi) · · · spin(BN)

]⊤
, (7)

where Bi is the i-the column of the following standard 1 3 × N matrix of shape
functions derivatives with respect to initial coordinates

B =

· · ·
∂hi,o

∂x0
· · ·

· · · ∂hi,o

∂y0
· · ·

· · · ∂hi,o

∂z0
· · ·

 =
∂ho

∂x0

= J−⊤ ∂ho

∂ξ
=

(
∂ho

∂ξ
X⊤

0

)−1
∂ho

∂ξ
, (8)

where x0 = [x0, y0, z0]
⊤ is a vector of initial nodal coordinates, X0 is a 3×N matrix

of initial nodal coordinates of all element nodes in the GCS, ho is a vector of N shape
1standardly reshaped into the 6× 3N matrix B and used for e.g. strain computation
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functions evaluated at the element centroid after its derivative, ξ = [ξ, η, ζ]⊤ is a vector
of natural coordinates, and J is a Jacobi matrix.

The operator spin is related to the cross-product, as defined e.g. in [6, 9, 7], and it
transforms any 3×1 vector r = [r1, r2, r3]

⊤ into the skew-symmetric matrix as follows

spin(r) = r× =

 0 −r3 r2
r3 0 −r1
−r2 r1 0

 = −spin(r)⊤. (9)

There are more approaches to computing the rotation matrix form the deformation
gradient. Some iterative methods, see e.g. [14], may be computationally faster than
directly utilizing the Eq. (3), which requires computation of eigenvalues of a 3 × 3
matrix.

Knowing the B matrix, the deformation gradient can be efficiently computed as
follows

F = I +D = I +U B⊤, (10)

where I is a 3× 3 identity matrix, D is the so called (global) displacement derivative
matrix and U is a 3×N matrix of (global) nodal displacements of all N element nodes
in x, y, z directions.

2.2 Local deformational displacements

The local deformational displacement vector of a general node i is in [6] expressed as

ui = R⊤(xi − x1)− (xi,0 − x1,0) = R⊤xio − xio,0, (11)

where xi and x1 are the global coordinates of nodes i and 1, respectively, in the current,
i.e., deformed configuration, and xi,0 and x1,0 are the global coordinates of nodes i and
1, respectively, in the initial configuration.

Figure 1 shows the computation of the local deformational displacement vector for
a general node i, shown for simplicity in 2D. The term xio = xi − x1 in Eq. (11)
is a coordinate of the node i with respect to the LCS origin, here node 1, in the
current configuration. This coordinate is then rotated back to the initial configuration
orientation via the multiplication by R⊤. Finally, the initial coordinate of the node
i with respect to the initial LCS origin xio,0 is subtracted from it to obtain the local
deformational displacement of the node i, which is assumed to be small.

In general, the 3N × 1 local deformational displacement vector of a finite element
can be expressed as

u = diag(R⊤)(u+ x0 − uo − xo,0)− x0, (12)

where the operator diag forms a block diagonal matrix of N copies of the 3×3 rotation
matrix R, so that each rotation matrix corresponds to each node, u is a vector of the
(global) nodal displacements, x0 is a vector of the initial nodal coordinates, uo and

5



Y

X

i
2

i
1

r
1

r
2Stretch (U)

Rotate (R)

Initial configuration

Current configuration

ui → u

xo,0

uo

x
0

xio,0 → x0

xio → x
u

x
1,0

x
i,0

x
1

x
i

Figure 1: Kinematics of the CR solid finite element: computation of the local deforma-
tional displacement for a general node i (in red and blue) and as a vector for
all element nodes (in orange and blue)

xo,0 are the vectors of N copies of the (global) displacements and initial coordinates of
the LCS origin, 2 respectively, and x0 = x0 − xo,0 is the vector of local 3 initial nodal
coordinates.

The vectors uo and xo,0 represent the rigid body translations of the element. Al-
though these vectors may be useful, for example, when plotting a meaningful magnitude
of the deformational displacements, they can be excluded from Eq. (12) for the subse-
quent computation of the internal force vector. The rigid body displacements lie in the
null space of the stiffness matrix and therefore cannot produce any deformational force.
This is the reason why the origin of the LCS can be arbitrarily chosen.

Therefore, the local deformational displacement vector, which is further used, has

2The LCS origin can be chosen arbitrarily. Typically, it is a node 1 or element centroid.
3Local means with respect to the LCS.
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the following simplified form

u ≡ diag(R⊤)x− x0, (13)

where x = u+ x0 is the nodal coordinate vector in the current configuration.

2.3 Internal force

The resistance to deformation of the small-strain element is given by the linear stiffness
matrix K. The internal force vector

f =

(
∂φ

∂u

)⊤

=

(
∂φ

∂u

∂u

∂u

)⊤

=

(
∂u

∂u

)⊤

Ku = T⊤f (14)

is defined as a derivative of the strain energy φ = 0.5u⊤Ku with respect to the global
nodal displacements u. The expression of the transformation matrix T = ∂u

∂u
is not

straightforward to obtain because the derivative of Eq. (13) involves a derivative of the
rotation matrix. In [6], it is expressed as

T⊤ =

(
∂u

∂u

)⊤

= diag(R) + V Z⊤, (15)

where the 3N × 3 term V , which is not explicitly named in [6], is given by

V = − diag(R)A(Z⊤A)−1 ⇔ diag(R)G
⊤
R⊤ = G⊤ (16)

and where G and G are the local and global spin-fitter matrix, respectively, which are
defined in the next section, and the nameless 3N × 3 term Z is

Z = diag(R⊤) col(S(xio)) = − diag(R⊤)

− spin(x1o)
...

− spin(xNo)

 ⇔ − diag(R⊤)S =

(17)
= − diag(R⊤)SRR⊤ = −SR⊤, (18)

where xio = xi − xo is a global coordinate of the node i with respect to the LCS
origin, here node 1, in the current, i.e. deformed, configuration, the operator col forms
a column 3N × 3 matrix, and S and S are the local and global spin-lever matrix,
respectively, defined in the next section.

The transformation matrix according to Crisfield and Moita seems to have a different
form than the one with a projector matrix used by many other authors, including
Felippa and Haugen. However, inserting Eq. (16) and Eq. (18) to Eq. (15) yields the
transformation matrix in the following form

T⊤ = diag(R)[I3N −A(S
⊤
A)−1S

⊤
] = diag(R)(I3N − SG)⊤, (19)
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where I3N is an 3N × 3N identity matrix, the identity R−1R = I was used, and the
term I3N − SG represents the nonlinear projector matrix P .

The resulting internal force vector

f = T⊤f = [diag(R) + V Z⊤]Ku ⇔ diag(R)(I3N − SG)⊤Ku = diag(R)P
⊤
f

(20)
is equivalent to Felippa’s formulation in [9]. The local internal force vector f is
first corrected in the LCS by the projector matrix and then rotated back to the GCS.
Although Crisfield and Moita do not mention it, they use a projector matrix to express
the internal force vector.

2.4 Tangent stiffness matrix

The consistent tangent stiffness matrix of an element

K =

(
∂2φ

∂u2

)⊤

=

(
∂f

∂u

)⊤

= T⊤KT +
∂(T⊤f)

∂u⊤

∣∣∣∣
f=const.

= Km +Kg (21)

is defined as a derivative of the internal force vector with respect to the global nodal
displacements. The derivative of Eq. (20) yields two parts, the material tangent stiff-
ness matrix Km and the geometric tangent stiffness matrix Kg, whose derivation is
mathematically involved.

The resulting tangent stiffness matrix according to Crisfield and Moita is

K = T⊤KT − col(S(f r))V
⊤ +V row(S(f r)) +V sym

N∑
i=1

[
S(xio)S(f r,i)

]
V ⊤,

(22)
where the last term is artificially symmetrized via the sym operator and where

− col(S(f r)) = [row(S(f r))]
⊤ ⇔


− spin(f r,1)

. . .

− spin(f r,i)
. . .

− spin(f r,N)

 =


− spin(Rf 1)

. . .

− spin(Rf i)
. . .

− spin(RfN)



= − diag(R)


spin(f 1)

. . .

spin(f i)
. . .

spin(fN)

R⊤ = − diag(R)F CR
⊤,

(23)

where the identity spin(Rf i) = R spin(f i)R
⊤ is applied.
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For comparison purposes, inserting Eq. (16), Eq. (20) and Eq. (23) to Eq. (22) and
utilizing R⊤R = I yields Crisfield’s tangent stiffness matrix in Felippa’s notation

K = diag(R)P
⊤
KP diag(R⊤)− diag(R)F CG diag(R⊤)

− diag(R)G
⊤
F

⊤
C diag(R⊤) + diag(R)G

⊤
sym(S

⊤
F C)G diag(R⊤).

(24)

Since the consistent tangent stiffness matrix is a Hessian of the strain energy, it
should result in a symmetric matrix. In Eq. (22), the first term is symmetric, the
third is the transpose of the second, preserving the symmetry, and the fourth term
is artificially symmetrized. Crisfield and Moita claim that the non-symmetric part∑N

i=1 xio×f r,i of the fourth term vanishes at equilibrium and therefore can be neglected
[6]. However, as reported in [8], it is a misconception stemming from the fact that for
the cross-product representing the element global moment equilibrium, the rotated local
internal forces f r = diag(R)f were considered instead of the global internal forces
f = [diag(R) + V Z⊤]f which additionally include the projector. Since the variation
of V was ignored, the resulting Crisfield’s tangent stiffness matrix is inconsistent,
missing three additional terms as shown in [8], and had to be artificially symmetrized.
Fortunately, this misconception does not influence the resulting displacements, since
they are prescribed by the correct internal forces. It only slows down the convergence
rate of the incremental iterative procedure.

3 Felippa’s co-rotational formulation

Felippa’s CR formulation was developed by Felippa and Haugen and is well explained
in their seminal work [9]. Although the authors focus on structural FEs, i.e., shells and
beams, their principles are also valid for solid FEs, which do not possess additional
rotational DOFs.

3.1 Rotation matrix

The origin of the LCS is placed at the element centroid. In the case of beams and shells,
the orientation of the LCS, expressed by the rotation matrix, can be determined via the
side-alignment approach or a best-fit procedure. However, the determination of the
rotation matrix for 3D solid FEs is not specified in their work.

3.2 Local deformational displacements

In [9], a general, initially rotated LCS is assumed. This is particularly useful in the
case of beams and shells, where the LCS is often constructed using the side-alignment
approach, where one coordinate axis goes through two algorithmically selected element
nodes. However, for solid FEs, the initial LCS can be assumed parallel with the
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GCS, which turns the initial rotation matrix to identity. Felippa’s local deformational
displacement vector is then simplified to the following form

u = diag(R⊤)ud

= diag(R⊤)
[
u− uo − (diag(R)− I3N) (x0 − xo,0)

]
= diag(R⊤)

[
u− uo − diag(R)(x0 − xo,0) + x0 − xo,0

]
= diag(R⊤)

(
u− uo + x0 − xo,0

)
− diag(R⊤) diag(R)(x0 − xo,0)

= diag(R⊤)
(
u+ x0 − uo − xo,0

)
− x0

≡ diag(R⊤)x− x0,

(25)

where ud is the deformational part of the global displacement vector u measured in
the GCS, uo represents the rigid body translation of the element LCS and the term
(diag(R)− I3N) (x0 − xo,0) represents the rigid body rotation of the element LCS.
The resulting expression of the local deformational displacement vector is identical to
Crisfield’s formulation, see Eq. (12) . Again, the rigid body translations uo and xo,0 of
the element LCS origin do not influence the internal force computation and therefore
can be omitted.

3.3 Internal force

The internal force vector is defined following Eq. (14) as a transformed local internal
force vector. In [9], the transformation matrix is defined as follows

T⊤ =

(
∂u

∂u

)⊤

= diag(R)P
⊤
H

⊤
, (26)

where the matrix H assigns identity matrices to the translational DOFs and the Jacobian
derivatives of the rotational axial vectors with respect to the spin axial vectors to the
rotational DOFs. Therefore, in the case of solid FEs, this matrix has no effect and is
omitted.

The resulting internal force vector is

f = T⊤f = diag(R)P
⊤
f = diag(R)(I3N − SG)⊤f . (27)

The local spin-lever or moment-arm matrix has dimensions 3N ×3 and is defined as

S =
[
spin(x1) . . . spin(xN)

]⊤
=

− spin(x1)
...

− spin(xN)

 = diag(R⊤)

− spin(x1o)
...

− spin(xNo)

R

= diag(R⊤)SR ⇔ −ZR,

(28)

where the spin operator is defined in Eq. (9), xi = R⊤xio = R⊤(xi − xo) is the local
nodal position of the node i in the current configuration, S is the global spin-lever
matrix and Z is mentioned here to define the link to Crisfield’s formulation.
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The local spin-fitter matrix, introduced by Haugen in [10], links variations in the
element spin (instantaneous rotations) at the centroid of the deformed element in
response to variations in the local nodal displacements δω := G δu. Unlike S, the
G matrix depends not only on element geometry, but also on the method of the LCS
construction. Probably, for this reason, its derived form is rarely presented in the
literature.

The local spin-fitter matrix for 3D solid FEs has dimensions 3× 3N and, for the
LCS constructed by the polar decomposition method, it can be computed, utilizing the
matrix A defined in Eq. (7), as follows

G =
[

∂ω
∂u1

. . . ∂ω
∂uN

]
= (A⊤S)−1A⊤ ⇔ −R⊤(A⊤Z)−1A⊤

= R⊤ [
−(A⊤Z)−1A⊤ diag(R⊤)

]
diag(R) = R⊤G diag(R),

(29)

where the last expression in Eq. (28) is utilized, G is the global spin-fitter matrix, and
Z is mentioned here to define the link to Crisfield’s formulation.

The projector matrix P = I3N−SG in Eq. (27) ensures that the local internal forces
at the element nodes are in a moment balance. The term S

⊤
f =

∑N
i=1 spin(xi)f i =∑N

i=1 xi × f i = mu represents the local unbalanced moment. The spin fitter matrix
then turns it into the local unbalance force fu = G

⊤
S

⊤
f = G

⊤
mu which is projected

out of the local internal force f . The projected local force fp does not produce an
unbalanced moment

S
⊤
fp = S

⊤
(I3N −G

⊤
S

⊤
)f = 0, (30)

because the bi-orthogonality condition GS = S
⊤
G

⊤
= I , established in [15], applies.

Therefore, P has its idempotent projector property

P
2
= I3N − 2SG+ SGSG = I3N − SG = P . (31)

The origin of the local unbalanced moment and the need for the projector result
from the imperfect computation of the element rotation matrix. Since most of the solid
FEs allow different rotations at their various points, the rotation matrix calculated in
the element centroid cannot always substitute the exact mean element rotation [7]. It is
just a good approximation. The only exceptions are the triangular and tetrahedral FEs
that have a constant deformation gradient. Their rotation matrix, computed in element
centroid, represents exactly the rigid body rotation of the whole FE, and the projector
matrix has no use there.

3.4 Tangent stiffness

The consistent tangent stiffness matrix of a solid element

K =

(
∂2φ

∂u2

)⊤

=

(
∂f

∂u

)⊤

= Km +Kgr +Kgp (32)
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is defined as a derivative of the internal force vector with respect to the global nodal
displacements. The derivative of the internal force vector f = diag(R)P

⊤
f from

Eq. (27) yields the following three parts. The material stiffness matrix Km is the result
of the variation of the local internal force f and is given by a congruent transformation
of the local stiffness matrix K to the GCS. The rotational geometric stiffness matrix
Kgr results from the variation of the element rotation matrix diag(R) and represents
the gradient of the internal force vector with respect to the rigid rotation of the element.
The equilibrium projection geometric stiffness matrix Kgp results from the variation of
the projector P and represents the variation of the projection of the local internal force
as the element geometry changes.

The resulting tangent stiffness matrix for a 3D solid finite element according to
Felippa and Haugen is

K = diag(R)P
⊤ ∂f

∂u⊤ +
∂(diag(R)fp)

∂u⊤

∣∣∣∣∣
fp=const.

+ diag(R)
∂(P

⊤
f)

∂u⊤

∣∣∣∣∣
f=const.

= diag(R)P
⊤
KPdiag(R⊤)− diag(R)FGdiag(R⊤)− diag(R)G

⊤
F

⊤
Pdiag(R⊤),

(33)

where fp = P
⊤
f is the projected local internal force vector and whose nodal compo-

nents are transformed into the skew-symmetric matrices that are stacked to a 3N × 3
matrix

F =

 spin(fp1)
...

spin(fpN)

 . (34)

In the case of elements with rotational DOFs, the term F in Kgr is not the same
as in Kgp, and two additional geometric stiffness terms Kgm and ∆Kgp appear in the
consistent tangent stiffness matrix, see e.g. [9] for details.

The tangent stiffness matrix is symmetric without neglecting any terms. Comparing
Felippa’s tangent stiffness matrix in Eq. (33) to Crisfield’s one in Eq. (24), one can
clearly see that the first three terms look similar. However, F C is built from only the
local internal forces, whereas F is built from the projected local internal forces.

4 Conclusions

In this study, two established (CR) formulations, Crisfield’s and Felippa’s, have been
systematically rewritten using a unified notation, enabling a direct and transparent
comparison. Although Crisfield’s formulation does not explicitly mention projectors, it
implicitly employs them. The key contribution of this paper is an explicit formulation of
Crisfield’s matrix A and Felippa’s spin-fitter matrix G in a ready-to-implement matrix
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form for 3D solid FEs, whose rotation matrix is computed by the polar decomposition
of the deformation gradient.

The mathematical expressions throughout the paper have been reformulated to
enhance clarity and interpretability. Despite initial differences in the expressions for
deformational displacement vectors, it has been demonstrated that they are mathe-
matically equivalent. The internal force vectors derived from both formulations are
also shown to be identical. They both rely on the same projection operator, ensuring
equilibrium not only in forces but also in moments. As a result, both formulations yield
the same displacement fields for given loads and boundary conditions.

However, the formulations differ in their computation of the rotation matrix, re-
flecting their original application focus, with Felippa targeting beams and shells, and
Crisfield accommodating also 3D solids. Furthermore, the tangent stiffness matrices
are not equivalent. Crisfield, like many other authors, omits some higher-order terms
arising during the derivation, which affects the speed of the incremental-iterative solu-
tion procedure but not its accuracy, which is completely defined by the internal force
vector. Consequently, Felippa’s consistent tangent stiffness matrix is expected to reach
the convergent solution with fewer NR iterations.

Based on these findings, the authors are developing a new CR formulation for 3D
solid FEs that synthesizes the strengths of both Crisfield’s and Felippa’s approaches.
The algorithm and its numerical performance will be presented in a forthcoming journal
publication.
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