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Abstract

The Gurson-Tvergaard-Needleman (GTN) model is used for porous materials with
a plastically isochoric matrix and a volume growth due to the plastic flow in the
matrix. The model is used extensively for cast and 3D printed metals, and can be
used for metal foams and metamaterials. However most simulations are performed
with small strain frameworks or using either hypoelastic formulations teamed with
objective stress rates, or Green-based elastoplastic decompositions of total strains.
These approaches present known inconsistencies. We present herein a new formula-
tion based on the concept of continuum elastic corrector rates. The derived algorithm
retains the additive updates typical of the infinitesimal formulation, but it is consistent
with the multiplicative decomposition and a general hyperelastic stored energy.

Keywords: large strains, void growth, GTN plasticity, logarithmic strains, damage
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1 Introduction

The Gusson-Tvergaard-Needleman (GTN) model [1] is used mainly to model ductile
porous materials, where growth of the voids is due to the isochoric deformation of the
metal matrix. In theory, the model considers two scales, one of the matrix and one of
the continuum. However, in practice, it is treated as a continuum elastoplastic model,
where the void growth is indirectly obtained from the volumetric flow from a proposed
yield surface. The ideas behind the model go back at least to the work of Rice and
Tracey [2]. Rice and Tracey derived the equation for growth of a spherical void in an
elastoplastic metal under a mean stress at infinite. This flow motivates the GTN yield
function, such that the volumetric rate of the GTN model (from the derivative of the
yield function respect to the mean stress) is equivalent to the growth of voids under
an infinite mean stress. It has been shown that the Gurson model is equivalent to a
damage model [3], where the damage variable is related to the void ratio.

From a computational standpoint, the stress integration in a finite element model is
often performed using a small strains framework. However, in most cases, strains in
ductile materials reach the large strain regime. The extensions of the GTN model to
large strains have followed mostly two paths: the use of hypoelastic formulations with
objective stress rates and incrementally objective integration algorithms [4], or the
use of Green additive decompositions of logarithmic strains into elastic and plastic
parts [5]. The main reason behind the departure from the sound multiplicative de-
composition and the hyperelastic framework is the relative simplicity of the resulting
theory and computational algorithm. These recover the simpler additive structure of
the backward-Euler (predictor-corrector) algorithms [6,7], facilitating both the deriva-
tions and the algorithmic implementation. Moreover, these formulations are easily
integrated in canned user subroutines in finite element programs by just plugging the
small stress integration algorithm.

The cost of the convenience of the previous large strain formulations for GTN
models has been the use of questionable assumptions like hypoelasticity (which is
not path independent) or the assumption of a plastic strain tensor from an additive
decomposition of the total strains. Similar inconveniences were found in anisotropic
elastoplasticity or in crystal plasticity.

In recent years we have been developing a new general approach for large strains
elastoplasticity and viscoelasticity. This approach is derived from the multiplicative
decomposition of the deformation gradient, but also results in an additive update of
the elastic deformation tensor due to plastic flow. The formulation is hyperelastic and
compatible with any stored energy (hence valid for polymers), and is valid for both
elastic and plastic anisotropy [8]. Furthermore, nonlinear kinematic hardening can
be obtained without the concept of backstress [9]. For Mises plasticity, the iterative
phase of the stress integration is identical to the Krieg and Key algorithm, whereas
the consideration of large strains merely consists on the consideration of kinematic
(non-iterative, explicit) pre- and post-processors [9]. The approach has been extended
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to develop a plane stress constrained algorithm (very uncommon at large strains) [10]
and to crystal plasticity [11]. All formulations are similar and, in all cases, all the
advantages have been preserved (additive updates like in small strains, general hyper-
elastic relations and consistent with the multiplicative decomposition).

In this work we extend the formulation to pressure-sensitive yield functions, in par-
ticular to porous plasticity. It is shown that in this case, all the previous advantages are
still preserved. The integration algorithm has the same structure as the infinitesimal
one without the need of any approximation. Large strains reduce to the consideration
of the same kinematic pre- and post-processors as in the other cases.

2 Volumetric kinematic relations

Consider an infinitesimal reference continuum volume dV composed of voids dVe

and matrix dVm. The current deformed volumes are, respectively dv, dvo, dvm =
dVm + dve + dvp, where dve is the elastically deformed volume of the matrix and dvp
is the plastic deformation. In void growth GTN-type models, the isochoric-volumetric
coupling comes from the growth of the voids during isochoric plastic deformation of
the matrix. To simplify the notation, we will omit the differential volume symbol d,
unless necessary (we can think of homogeneous deformations). The “rates” (•̇) refer
to evolution with deformation.

The plastic flow in the matrix is isochoric, so v̇o ≡ v̇p. The deformed continuum
volume is

v = Vm + vo + ve (1)

which can be written as

ve = ve (v, vo) = (v − Vm)− vo (2)

The expression ve (v, vo) is very relevant; we are stating that the elastic volumetric
deformation is a function of two state variables, the total volume at the continuum
scale and the void content. The rates are v̇e = v̇ − v̇o.

If the deformation gradient is F, and the Jacobian is J = det (F), the change of
volume gives

J =
v

Vm

=

(
Vm + vo + ve

Vm + vo

)(
Vm + vo

Vm

)
= JeJo ≡ JeJp (3)

where Jo ≡ Jp because the matrix deformation is isochoric, so the void growth and
the volumetric plastic deformation are coincident. Note that this corresponds to the
volumetric part of the classical Kröner-Lee decomposition. In GTN formulations, it
is customary to use the void ratio, defined as

f (vo) =
vo

Vm + vo
(4)
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Then,
Jp − 1

Jp
=

Vm + vo
Vm + vo

− Vm

Vm + vo
=

vo
Vm + vo

= f (5)

The void ratio ḟ and J̇p relate through

ḟ

1− f
=

v̇o
Vm + vo

=
J̇p
Jp

(6)

The function dependencies in ve (v, vo) result into two partial derivatives:

d

dt
(J)|J̇p=v̇o=0 =

d

dt

(
Vm + vo + ve

Vm

)∣∣∣∣
J̇p=v̇o=0

=
v̇e
Vm

(7)

and
d

dt
(J)|J̇p=v̇o=0 J

−1 =
v̇e
Vm

Vm

Vm + vo + ve
=

v̇e
Vm + vo + ve

(8)

This partial derivatives correspond conceptually to the trial predictor and elastic cor-
rector terms, but note that we are not dealing here with algorithmic concepts, but with
continuum ones. Hence, we preserve that predictor-corrector rate naming because of
the parallelism, but the subtle difference is crucial in deriving consistent formulations.
Then

J̇e

∣∣∣
v̇o=J̇p=0

Je
=

J̇
∣∣∣
v̇o=J̇p=0

J
⇔ trĖv

e = Ėv
∣∣∣
v̇o=J̇p=0

(9)

with Ev
e = ln Je, and[

d

dt
(JeJp)

]
v̇=0

(JeJp)
−1 = 0 =

J̇eJp + JeJ̇p
JeJp

∣∣∣∣∣
v̇=0

=
J̇e
Je

∣∣∣∣∣
v̇=0

+
J̇p
Jp

(10)

so
ctĖv

e =
J̇e
Je

∣∣∣∣∣
v̇=0

= − J̇p
Jp

(11)

and

− ctĖv
e =

J̇p
Jp

≡ J̇o
Jo

=
v̇o

Vm + vo
=

ḟ

1− f
(12)

Note that this equation has no approximation and is derived from the multiplicative
decomposition. This is not conceptually a plastic strain increment or rate, but a cor-
rection of the elastic strain rate.

If the yield stress in the matrix is κ, according to Rice and Tracey, the growth of a
spherical void under a mean stress p is

ṙ

r
= ϵ̇pma sinh

(
3

2

p

κ

)
(13)
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where a is a constant, p/κ is the triaxiality factor and ϵ̇pm is the rate of effective plastic
strain in the matrix (uniaxial equivalent). To transfer this equation to large strains, we
interpret κ and p as Kirchhoff measures, and ϵ̇pm as the rate of a logarithmic equivalent
plastic strain in the matrix. Then, we can write

− ct,gĖv
e = 3ϵ̇pmaf sinh

(
3

2

p

κ

)
⇒ − ct,gĖv

e =
1
3

ct,gĖv
e I = ϵ̇pmaf sinh

(
3

2

p

κ

)
I

(14)

3 Matrix deformations

Let Ψ(Ee) be the stored energy (any suitable function can be employed; there is no
restriction), where Ee = 1

2
ln
(
FT

e Fe

)
. The plastic dissipation in a reference volume

is [8]

Ḋp = P − Ψ̇ = T : Ė− dΨ

dEe

: Ėe

= T : Ė− dΨ

dEe

:
(

trĖe +
ctĖe

)
(15)

Since

Ee (E,Fp) ⇒ Ėe =
∂Ėe

∂E
: Ė+

∂Ėe

∂Fp

: Ḟp = Ėe

∣∣∣
Ḟp=0

+ Ėe

∣∣∣
Ė=0

= ctĖe+
trĖe (16)

following the standard Colemann arguments

T =
dΨ

dEe

:
∂Ee

∂E

∣∣∣∣
Ḟp=0

= T|e :
∂Ee

∂E

∣∣∣∣
Ḟp=0

(17)

where T|e are the stresses in the intermediate configuration (for logarithmic strains)
and the latter fourth order tensor is the mapping to the reference one. Recall that T is
work-conjugate of E in the most general anisotropic case..

Obviously the voids cannot carry stresses, so by homogenization:

T|e =
1

v0 + Vm

[
0 +

∫
Vm

T
|e
microdVm

]
=

Vm

v0 + Vm

T|e
m (18)

Tvergaard added a stress concentration constant q1 (typically q1 = 1.5), as

T|e
m =

T|e

(1− q1f)
(19)

Then, the dissipation taking place in the matrix is purely isochoric, and is

Ḋp
m = −T|e

m:
ctĖe ≡ −Td|e

m : ctĖd
e =: κϵ̇pm > 0 (20)
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where by (•)d we denote isochiric/deviatoric parts and by (•)v the volumetric ones. In
von Mises plasticity, we write the flow rule as

− ctĖd
e = γ̇N̂ =

3

2
ϵ̇pm

T
d|e
m

κ
(21)

where N̂ is the unit tensor in the isochoric matrix flow direction. Then, we can write

Ḋp
m − κϵ̇pm =

(
1

κ

3

2
Td|e

m : Td|e
m − κ

)
ϵ̇pm = 0 (22)

or using Eq. (19)

Ḋp
m − κϵ̇pm =

(
1

κ

3

2

Td|e

(1− q1f)
:

Td|e

(1− q1f)
− κ

)
ϵ̇pm = 0 (23)

which for ϵ̇pm ̸= 0 is equivalent to consider

F d =
3
2

∥∥Td|e
∥∥2

κ2
− (1− q1f)

2 = 0 (24)

which is the Gurson yield function (without the triaxiality influence).

4 Triaxiality: pressure influence

The GTN yield function adds the influence of the triaxiality (ratio between the pressure
and the yield stress in the matrix) in the void growth:

F (Td|e, p) =
3
2

∥∥Td|e
∥∥2

κ2
− (1− q1f)

2 + 2q1f

[
cosh

(
q2
3

2

p

κ

)
− 1

]
= 0 (25)

where q2 is another parameter. Associativity of the flow gives the flow rule

− ctĖe = λ̇
dF

dT|e = λ̇
dF

dTd|e :
dTd|e

dT|e + λ̇
dF

dp

dp

dT|e

= 3λ̇
Td|e

κ2
+ λ̇

q2 (q1f)

κ
sinh

(
3

2

p

κ
q2

)
I

= − ctĖd
e − ctĖv

e = − ctĖd
e − 1

3
ct,gĖv

e I (26)

After some algebra, using the previous equations, we can derive the relation

ḟ =
3

2

1− f

1− q1f
q2q1f sinh

(
3

2

p

κ
q2

)
ϵ̇pm (27)
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For the particular case of a tensile test, we can obtain the following approximate rela-
tion between the yield stress in the continuum and the yield stress in the matrix as a
function of the void ratio:

TY ≈ (1− q1f)√
1 + 1

4
q1q22f

κ (28)

In a similar way, it also brings the relation between the logarithmic plastic strain rate
in the matrix ϵ̇pm and in the continuum ϵ̇p

Ḋp = (1−q1f)κϵ̇
p
m ≈

√
1 + 1

4
q1q22f TY ϵ̇

p
m = TY ϵ̇

p ⇒ ϵ̇p =
√

1 + 1
4
q1q22f ϵ̇pm (29)

ϵ̇pm and ϵ̇p are only different for large void ratios, so in practice we can take ϵp ≃ ϵpm.

5 Stress integration algorithm

With the previous framework, it is straightforward to establish a fully implicit Backward-
Euler stress integration algorithm for the formulation. The two nonlinear equations to
solve iteratively are the yield function and the flow rule, where Ee and ∆ϵpm are the
iterative variables

F (Ee) ≡
3
2

∥∥Td|e(Ee)
∥∥2

κ2
− (1− q1f)

2 + 2q1f

[
cosh

(
q2
3

2

p

κ

)
− 1

]
→ 0

(30)

G(Ee,∆ϵpm) ≡ ctEe + 3∆λ̄(∆ϵpm)
Td|e(Ee)

κ
+∆λ̄(∆ϵpm) q2q1f sinh

(
3

2

p

κ
q2

)
I → 0

(31)

with

ctEe = Ee − trEe (32)

T|e(Ee) = dΨ(Ee)/dEe (33)

p(Ee) =
1
3
T|e : I (34)

Td|e(Ee) = T|e − pI (35)

∆λ̄(∆ϵpm) =
∆ϵpm

2(1− q1f)
(36)

and κ = κ(∆ϵpm) in the case of hardening.
Remarkably, this iterative algorithm is the same as that of infinitesimal strains,

where T|e plays the role of the Cauchy stresses and Ee plays the role of the infinitesi-
mal elastic strains.

The development of the Newton algorithm follows the typical steps, including the
consistent tangent for the global iterations.

7



The formulation has been developed in terms of Generalized Kirchhoff stresses
and referential logarithmic strains. Since finite element codes are usually formulated
in terms of second Piola-Kirchhoff stresses and Green-Lagrange strains, the proper
mappings need to be performed, both in the final stresses and in the corresponding
tangent. Since these steps are the same as those for the other models using this frame-
work, we refer to [8–11] for further details.

6 Example

We have implemented the present GTN model in our in-house finite element program
Dulcinea. In this example we show the comparison of the present formulation with
the predictions by Abaqus. The chosen example is the stretch of the plate with a hole,
found in many other works [6,8,9]. The plate has been modelled with symmetry con-
ditions. The dimensions are given in Fig. 1. The stored energy is linear in logaritmic
strains, with elastic constants C11 = 269.4 GPa, C12 = 115.4 GPa, C44 = 77 GPa,
and initial yield stress for the matrix of κ0 = 96 MPa. The Tvergaard constants are
q1 = 1.25 and q2 = 1.25. The hardening law (needed to avoid early localization) is
κ = κ0 + 53ϵpm for Abaqus, and equivalent values for our model. The finite elements
used are C3D20R and the Dulcinea equivalent.

The specimen deformation is 7.5% of the length of the plate. Results are shown in
Figure 1. It can be observed that the differences between the predictions from both
models are very small. This should be expected given that loading is monotonic and
the level of deformation is moderately large.

As it is well known, given that localization of deformations is expected, the results
can be mesh dependent, and suitable formulations (as phase field) which include a
length scale should be used for non-academic examples. However, we note that both
meshes (Abaqus and Dulcinea) are identical, so a one-to-one comparison of predic-
tions from both models, which is the focus of this work, can be made.

7 Conclusion

In this paper we have presented a continuum formulation for large strain porous plas-
ticity that is consistent with the multiplicative decomposition and with any hyperelas-
tic stored energy function. The formulation facilitates a very simple, additive, stress
integration algorithm, mimicking the infinitesimal one. In practice, the large strains
enter the algorithm as a standard pre- and post-processor, the same one as those used
by other models based on strain rate corrector concept.

The formulation has been compared to the built-in formulation in Abaqus, which
is hypoelastic, based on objective stress rates and the incrementally objective Hughes-
Winget integration algorithm, obtaining very similar results for the moderately large
range of ductile metals.
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Figure 1: Plate with a hole. Comparative example of the present formulation (hyper-
elastic, based in the multiplicative decomposition) with the built-in formu-
lation in Abaqus (hypoelastic, using objective stress rates). Left: Original,
undeformed mesh and reaction force. Right: deformed meshes and void ra-
tio predictions using both models. Slight differences are due to the different
nodal extrapolation of results for plotting employed by both programs.
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