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Abstract

The theory of peridynamics has been proven to be effective in several applications
involving fracture phenomena. Over the past two decades, several works investigated
the possibility of modeling anisotropic materials with the peridynamic theory. In this
context, we introduced an ordinary state-based peridynamic formulation capable of
accurately predicting the anisotropic behavior of materials subjected to small defor-
mations. In this formulation, the stiffness of a bond between two material points de-
pends not only on its own direction (through the single-bond micromodulus), but also
on the direction of the other bonds connected to those points (through the double-bond
micromodulus). The present work verifies that this peridynamic model can also be ap-
plied to anisotropic materials under finite deformations. Furthermore, we developed
a numerical method based on an incremental-iterative analysis which is able to solve
the geometrically nonlinear problem of Cook’s membrane made of a linear, elastic,
anisotropic material. This is a preliminary step towards using peridynamic theory to
model fracture in hyperelastic anisotropic materials.

Keywords: ordinary state-based peridynamics, anisotropic materials, finite deforma-
tion, Cook’s membrane, single-bond micromodulus, double-bond micromodulus
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1 Introduction

Peridynamics is a nonlocal continuum theory capable of modeling fracture phenomena
without any mathematical inconsistencies across the discontinuities in the displace-
ment field [1, 2]. In fact, the displacement gradient used to define the deformation of
the body is replaced by integrals over a spherical region with a finite radius. The in-
tegration region is called neighborhood and the peridynamic interaction between two
material points is named bond. The forces arising in the bond due to the deformation
of the body can be defined to depend only on the relative displacements of the mate-
rial points, such as in bond-based peridynamics, or on the relative displacements of all
material points within the neighborhood, such as in state-based peridynamics. In the
former case, the force that one point exerts on another is the same as the force that the
second point exerts on the first one. However, since the bond force is defined by a pair
potential function in the bond-based formulation, the value of the Poisson’s ratio can-
not be arbitrarily chosen [3]. On the other hand, in state-based peridynamics the two
forces that material points exert on one another may have different magnitudes. This
allows to freely choose the value of the Poisson’s ratio in these peridynamic models.

Constitutive modeling has been a very active topic of research in the peridynamic
community. We focus here on the modeling of anisotropic materials given the role
they play in many application fields, such as the medical field (anisotropic biomate-
rials) and the aerospace industry (advanced composites). The peridynamic stiffness
of a bond, called micromodulus, can be modified to depend on the direction of the
bond itself. This approach was applied to bond-based peridynamics to model ma-
terials with anisotropic properties [4, 5]. However, anisotropic materials cannot be
accurately modeled by bond-based peridynamics because the elastic coefficients must
satisfy Cauchy’s relations and at least one of them has a fixed value [5].

A peridynamic material is ordinary if the bond forces are always aligned to the
bond itself. Bond-based peridynamics [1] and ordinary state-based peridynamics [2]
exhibit this characteristic. We proposed an ordinary state-based formulation to model
anisotropic materials in [10]. This formulation adopts a micromodulus that depends
only on the direction of the bond and an additional micromodulus that depends on the
directions of two bonds within the same neighborhood. The former micromodulus,
similar to the micromodulus used in bond-based peridynamics, is called single-bond
micromodulus and the latter, used to overcome Cauchy’s relations, is called double-
bond micromodulus. These micromoduli can be defined in such a way that the peri-
dynamic constitutive laws exactly reproduce all components of the elasticity tensor,
regardless of their values.

Another approach to model anisotropic behavior is to consider non-ordinary peri-
dynamic materials. For example, bond-based peridynamics can be enhanced by in-
cluding shear deformability of the bonds [6] and this allows to overcome the restric-
tions due to Cauchy’s relations when modeling anisotropic materials [7]. Further-
more, the non-ordinary state-based peridynamic formulation can be used to incor-
porate, without any calibration of the stiffness properties, the constitutive models of
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anisotropic materials [2]. However, a stabilization method is required to avoid zero-
energy modes in non-ordinary state-based peridynamics [8, 9].

The ordinary state-based formulation proposed in [10] was analyzed under the as-
sumption of small deformations. However, since balance of angular momentum is
always satisfied with ordinary material models, it could also be applied to problems
with finite deformations without any internal inconsistency or violation of the con-
servation laws. Therefore, in this work, we verify that the above-mentioned ordinary
state-based peridynamic formulation for anisotropic materials is able to solve prob-
lems of linear elastic materials under finite deformation. To do so, we develop the
numerical method to simulate the 2D benchmark problem of Cook’s membrane. Even
if materials under large deformation are likely to behave nonlinearly, we restrict our
present work to linear materials. However, this represents the first step towards the
simulation of nonlinear, elastic, anisotropic materials under finite deformations.

2 Ordinary state-based peridynamic formulation for
anisotropic materials under finite deformations

By convention, a peridynamic state is denoted with underline and the bond to which
the state is applied is denoted within angle brackets ⟨·⟩ [2]. Let us consider, for exam-
ple, a bond ξ = x′−x between the material points x and x′. The displacement vector
state describes the relative displacement of the bond and is defined as

U⟨ξ⟩ = u(x′)− u(x) , (1)

where u is a displacement field. The extension scalar state describes the axial elonga-
tion of the bond and is defined as

e⟨ξ⟩ = ∥ξ +U⟨ξ⟩∥ − ∥ξ∥ . (2)

The direction vector state is the unit vector state in the direction of the deformed bond
and is defined as

M⟨ξ⟩ = ξ +U⟨ξ⟩
∥ξ +U⟨ξ⟩∥ . (3)

Peridynamics is based on integrals that sum up the contributions of all bonds con-
nected to a point. For instance, the internal force acting on a point x is computed
as the integral of forces of the bonds connected to point x. In fact, the peridynamic
equilibrium equation in static conditions is given as

−
∫
Hx

(T⟨ξ⟩ −T⟨−ξ⟩) dVx′ = b(x) . (4)

where T is the force vector state (force per unit volume squared), Hx is the neighbor-
hood of point x, Vx′ is the volume of point x′, and b is the external force density. In
2D models, the neighborhood is often chosen to be a circle with a radius δ, named the
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horizon size. The force state for the peridynamic model for anisotropic materials is
defined in Eq. (8).

For later use, the weighted volume at a point x is defined as

m(x) =

∫
Hx

ω⟨ξ⟩ ∥ξ∥2 dVx′ , (5)

where ω is a scalar state called influence function. In this work, the influence function
is chosen as ω⟨ξ⟩ = 1 and does not explicitly appear in the following peridynamic
integrals.

2.1 Constitutive model

In bond-based peridynamics for anisotropic materials, the stiffness of a bond depends
on the direction of that bond. The scalar state that describes this bond stiffness is
denoted by k⟨ξ⟩, namely the single-bond micromodulus. Since bond-based models
are based on pairwise interactions, they must satisfy Cauchy’s relations [5]. In fcat, in
a 2D problem involving a bond-based peridynamic material, if 5 out of 6 independent
components of the elasticity tensor are chosen, the sixth component is fixed due to
Cauchy’s relation.

Let us now consider two bonds connected to a material point x, namely ξ = x′−x
and ζ = x′′ − x, where the points x′ and x′′ lie within the neighborhood of point
x as shown in Figure 1. To overcome the limitation due to Cauchy’s relations, an
additional bond stiffness that depends on the directions of pairs of bonds, such as the
pair ξ and ζ, can be included in the formulation. The scalar double state that describes
this bond stiffness is denoted by λ⟨ξ, ζ⟩ and is called double-bond micromodulus.
This micromodulus must satisfy λ⟨ξ, ζ⟩ = λ⟨ζ, ξ⟩ to ensure that the peridynamic
elasticity tensor possesses the major symmetry. Therefore, in the ordinary state-based
peridynamic formulation for anisotropic materials, the stiffness of a bond ξ depends
not only on its direction but also on the directions of the bonds (like ζ) connected to
point x [10].

x

Hx

x′
x′′

ξ
ζ

Figure 1: Two bonds connected to point x.
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In order to model general anisotropic properties in ordinary state-based peridynam-
ics, a new definition of strain energy density at a point x is introduced [10]:

W (x) =
1

2m(x)

∫
Hx

k⟨ξ⟩ (e⟨ξ⟩)2 dVx′ +
1

2m(x)

∫
Hx

∥ξ∥ e⟨ξ⟩Λ⟨ξ⟩ dVx′ , (6)

where Λ⟨ξ⟩ is a scalar state named microforce, which is computed as

Λ⟨ξ⟩ = 1

m(x)

∫
Hx

λ⟨ξ, ζ⟩ ∥ζ∥ e⟨ζ⟩ dVx′′ . (7)

Since the contribution of the bond ζ is integrated over the neighborhood of point x,
the microforce depends only on the bond ξ. The definition of the microforce is sim-
ilar to that of dilatation in the original ordinary state-based formulation, but it also
embeds information about the stiffness of the bond related to the double-bond micro-
modulus. If the material is isotropic, the micromoduli are constant for any direction of
the bond and an ordinary state-based peridynamic formulation for isotropic materials
is retrieved.

From the derivatives of the strain energy density in Eq. (6), the force density vector
state and the components of the elasticity tensor can be respectively obtained (see
Appendix A in [10] for details) as

T⟨ξ⟩ = 1

m(x)
[k⟨ξ⟩ e⟨ξ⟩+ ∥ξ∥Λ⟨ξ⟩]M⟨ξ⟩ , (8)

Cijkℓ(x) =
1

m(x)

∫
Hx

k⟨ξ⟩ξiξjξkξℓ∥ξ∥2 dVx′

+
1

(m(x))2

∫
Hx

∫
Hx

λ⟨ξ, ζ⟩ ξiξjζkζℓ dVx′′ dVx′ . (9)

Note that the second term in Eq. (9) allows to overcome the restrictions due to Cauchy’s
relations, which instead would be inevitably present if only the first term was used. In
fact, in the latter case, the order of the indices would be irrelevant and the peridynamic
material would be required to satisfy Cauchy’s relations (Cijkℓ = Cikjℓ).

In this work, we consider only 2D problems and we adopt the same functions that
were used in [10] (even if their choice is not univocal) to describe the variation of the
micromoduli with the directions of the bonds:

k⟨ξ⟩ = 1

∥ξ∥4
(
kxxxx ξ

4
x + kxxxy ξ

3
x ξy + kxxyy ξ

2
x ξ

2
y + kyyxy ξxξ

3
y + kyyyy ξ

4
y

)
, (10)

λ⟨ξ, ζ⟩ = 1

∥ξ∥2∥ζ∥2 λxyxy ξxξyζxζy . (11)

The constants in these equations are determined by substituting Eq. (10) and Eq. (11)
into Eq. (9) and computing the integrals for the 6 independent components of the elas-
ticity tensor. This calibration is used to match the components of the elasticity tensor
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obtained with ordinary state-based peridynamics with those of classical continuum
mechanics:

kxxxx = 5Cxxxx − 10Cxxyy + Cyyyy , (12a)
kxxxy = 40Cxxxy − 24Cyyxy , (12b)
kxxyy = 76Cxxyy − 10Cxxxx − 10Cyyyy , (12c)
kyyxy = 40Cyyxy − 24Cxxxy , (12d)
kyyyy = 5Cyyyy − 10Cxxyy + Cxxxx , (12e)
λxyxy = 64Cxyxy − 64Cxxyy . (12f)

Note that, depending on the values of the components of the elasticity tensor, some
constants may be negative resulting in possible instabilities of the model. Further-
more, since Eq. (9) is valid only in the linearized case of small deformations [10],
the calibration of the micromoduli is approximated for the case of finite deformations
and may result in high discrepancies with respect to classical models for very large
deformations. Another cause of differences between the peridynamic and classical
models is the so-called surface effect, which is due to the fact that the calibration
of the peridynamic micromoduli is carried out assuming a complete neighborhood,
whereas peridynamic points close to the boundary of the body have an incomplete
neighborhood [11–14].

2.2 Numerical method

In order to solve a load-controlled problem with geometrical nonlinearity due to finite
deformations, an incremental-iterative analysis can be carried out: the external load
is incrementally applied in steps and the solution after the application of each incre-
ment is obtained (within a chosen tolerance) with an iterative procedure, such as the
Newton-Raphson method [15]. If the internal and external force vectors are denoted
by f int and f ext, an increment in the external force vector ∆f ext results in an increment
in the displacement field ∆u. Thanks to the Newton-Raphson method within the step,
the equations can be linearized as

f int +K∆u = f ext +∆f ext , (13)

where K is the tangent stiffness matrix. The increment of the displacement field ∆u
can be determined by solving Eq. (13). The new internal force vector can be computed
with the displacement vector u + ∆u and compared with the external force vector
f ext +∆f ext to compute the relative residual:

r =
∥f ext +∆f ext − f int∥

∥f ext +∆f ext∥
, (14)

If this residual is less than the prescribed tolerance, the external load can be incre-
mented again. Otherwise, a new iteration of the Newton-Raphson method is carried
out. In this work, the tolerance is chosen as 10−6.
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The meshfree method with a regular grid of nodes is often used to discretize peri-
dynamic models [16]. In 2D models, each node represents a square area h2 with
thickness t, where h is the grid spacing. The peridynamic equilibrium equation at a
node p for an increment in the external load is discretized as

−
∑
q∈Hp

(
Tpq −Tqp +∆Tpq −∆Tqp

)
βpq t

2 h4 = (bp +∆bp) t h
2 . (15)

where Hp is the neighborhood of node p, Tpq = T⟨ξpq⟩ and Tqp = T⟨ξqp⟩ are the
force states of the bonds between nodes p and q, βpq is the quadrature coefficient, and
bp is the external force density acting on node p. The quadrature coefficient β, used
to improve the numerical results of the integration, is computed with the algorithm
developed in [17]. By comparing Eq. (13) with Eq. (15), the following relations can
be derived:

f ext +∆f ext = (bp +∆bp) t h
2 , (16)

f int = −
∑
q∈Hp

(
Tpq −Tqp

)
βpq t

2 h4 , (17)

K∆u = −
∑
q∈Hp

(
∆Tpq −∆Tqp

)
βpq t

2 h4 . (18)

To evaluate the force state at the previous iteration and its increment, the following
equations are required:

Upq +∆Upq = uq − up +∆uq −∆up , (19)

Mpq +∆Mpq ≈
ξpq +Upq

∥ξpq +Upq∥
+

∆Upq

∥ξpq +Upq∥
, (20)

epq +∆epq ≈ ∥ξpq +Upq∥ − ∥ξpq∥+Mpq ·∆Upq , (21)

mp =
∑
q∈Hp

∥ξpq∥2 βpq t h
2 , (22)

Λpq +∆Λpq =
1

mp

∑
r∈Hp

λpq,pr ∥ζpr∥ epr βpr t h
2

+
1

mp

∑
r∈Hp

λpq,pr ∥ζpr∥∆epr βpr t h
2 , (23)

Tpq +∆Tpq =
1

mp

[
kpq

(
epq +∆epq

)
+ ∥ξpq∥

(
Λpq +∆Λpq

)] (
Mpq +∆Mpq

)
,

(24)
where the symbol “≈” means that the equation was linearized with respect to the
increment ∆u. Therefore, the force state at the previous iteration, used to compute
the internal force vector in Eq. (17), is given as

Tpq =
1

mp

[
kpq epq + ∥ξpq∥Λpq

]
Mpq , (25)
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whereas the increment in the force state, used to compute the tangent stiffness matrix
in Eq. (18), is given as

∆Tpq ≈
1

mp

[
kpq ∆epq + ∥ξpq∥∆Λpq

]
Mpq +

1

mp

[
kpq epq + ∥ξpq∥Λpq

]
∆Mpq .

(26)
With these equations, it is possible to implement the incremental-iterative analysis
that, if convergence is reached, finds the solution to the ordinary state-based peridy-
namic model for anisotropic materials under finite deformations.

3 Numerical example

We validate the numerical peridynamic model for anisotropic materials under finite
deformations by solving the benchmark problem of Cook’s membrane. Figure 2 shows
the geometry and boundary conditions imposed to the membrane. The thickness t of
the membrane is assumed to be equal to 1 mm. The left edge of the membrane is
clamped, whereas a force f = 5 kN is applied to the right edge. This load is subdi-
vided into 10 equal increments for the incremental-iterative analysis. The boundary
conditions are applied on the most external layer of nodes, even if this approach may
lead to undesired fluctuations in the peridynamic solution [12–14].

48 mm

44
m

m
16

m
m

x

y

f

Figure 2: Geometry and boundary conditions of the benchmark problem of Cook’s membrane.

We define a made-up orthotropic material for this numerical simulation with the
following properties: E1 = 15 GPa, E2 = 10 GPa, G12 = 5 GPa, and ν12 = 0.35,
where E is the Young’s modulus, G is the shear modulus, ν is the Poisson’s ratio,
and the subscripts indicate the directions in the material reference system. We also
assume that the material system is rotated by ϕ = 10◦ anticlockwise with respect
to the problem reference system to obtain a full elasticity matrix with the following
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components (see Section 6.1 of [10] for details of these calculations): Cxxxx = 16.18
GPa, Cyyyy = 11.07 GPa, Cxxyy = 3.80 GPa, Cxyxy = 4.99 GPa, Cxxxy = 0.43 GPa,
Cyyxy = 0.50 GPa.
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(a) ux (PD). (b) ux (FEM).
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Figure 3: Displacement field obtained with peridynamics (PD) and finite element method
(FEM) for the problem of Cook’s membrane.

The peridynamic body is discretized with a uniform grid spacing h = 0.25 mm
and the horizon size is δ = 0.75 mm. The same problem is also solved with the
finite element method (FEM) to provide a comparison with a solution obtained with
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classical continuum mechanics. For this simulation 8-node bilinear elements are used,
30 of them in each of the two direction. The results obtained with the two methods
are shown in Figure 3.

As discussed before, the PD and FEM solutions are not the same because they
are obtained with a nonlocal theory and a local theory, respectively. However, since
δ is small enough, the two solutions are similar. For instance, the displacement in
x direction of the node at the top right-hand corner of Cook’s membrane are ux =
−6.28 mm for the PD model and ux = −6.53 mm for the FEM model, whereas the
displacement in y direction of that node are uy = 7.20 mm for the PD model and
uy = 7.22 mm for the FEM model.

4 Conclusions

The constitutive modeling of anisotropic materials in the peridynamic theory has been
the topic of several papers in the last two decades. In particular, the authors of the
present work proposed an ordinary state-based peridynamic formulation to accurately
model anisotropic materials under small deformations. In this work, we verified that
this formulation is valid also in the case of finite deformations. We developed a numer-
ical peridynamic method able to address problems involving linear, elastic, anisotropic
materials under finite deformations and proved its validity by solving the benchmark
problem of Cook’s membrane. The results obtained with this method are similar to
those obtained with a classical finite element method. Although materials under large
deformation are likely to have a nonlinear constitutive model, we limited the present
analysis to geometrically nonlinear problems involving linear materials. Neverthe-
less, this work represents a first step towards the possibility of modeling hyperelastic
anisotropic materials with the peridynamic theory.
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