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Abstract

Assessing the blast resistance of reinforced concrete slabs is crucial for protecting
infrastructure against increasing risks from explosions and industrial hazards. The
complex behavior of slabs under blast loading, particularly when subjected to
cuboid-shaped charges, poses significant challenges for conventional experimental
and numerical methods. We develop a surrogate model that conducts high-fidelity
arbitrary Lagrangian-Eulerian (ALE) simulation results with machine learning
techniques to predict key blast parameters such as the arrival time, peak time, peak
pressure, decay duration, and impulse across a wide range of charge geometries. A
total of 363 simulations are conducted by systematically varying the length, width,
and height of cuboid-shaped charges to generate the dataset. Using the random
forest algorithm, the surrogate model generates pressure-time history curves, which
are verified against numerical simulation results. This study provides an efficient
approach for evaluating blast loading on critical structures and contributes to the
enhancement of safety design.

Keywords: blast simulation, arbitrary Lagrangian-Eulerian method, machine
learning, random forest, reinforced concrete, surrogate modeling.



1 Introduction

Among various structural elements, reinforced concrete (RC) slabs are widely used
and are exposed to the risk of external blast loads. Research on measuring blast
responses and predicting the behavior of RC slabs has become essential for evaluating
explosion-induced damage. Numerous experimental studies have investigated the
interactions between RC slabs and blast phenomena [1, 2, 3]. However, full-scale
blast tests are costly, pose significant safety concerns, and produce highly uncertain
measurements due to the extreme speed and intensity of chemical explosion reactions.
In recent decades, researchers have developed empirical models to address these
limitations. One of the most widely used tools is conventional weapons (CONWEP),
produced by the U.S. Department of Defense. This military code implements the
Kingery—Bulmash equation, which establishes mathematical relationships between
charge weight, standoff distance, and blast pressure [4]. However, CONWEP assumes
that explosive charges are spherical. In practical applications, charges are usually
cylindrical or cuboid. Consequently, assuming a spherical charge may lead to
inaccurate results. Therefore, in recent years, researchers have shifted from empirical
models to physics-based numerical analyses that incorporate both solid and fluid
mechanics [5, 6, 7, 8, 9]. Although these advanced simulations can represent
fluid-structure interactions more realistically, they require extensive computational
resources, limiting their practical applicability. Machine learning-based surrogate
modeling provides an effective alternative by reducing computational demands.

In this research, a machine learning model is trained by high-fidelity numerical
simulation data, enabling efficient prediction of blast parameters [10, 11, 12, 13]. We
develop a surrogate model to predict the blast parameters imposed on RC slabs by
cuboid-shaped charges under varying geometric conditions. A high-fidelity numerical
model based on the arbitrary Lagrangian-Eulerian (ALE) method is established
to simulate blast loading on RC slabs in an open field, and is verified against
experimental data by comparing peak pressure, as referenced in [14]. To generate
the dataset required for machine learning, the length, width, and height of the
cuboid-shaped charge are systematically varied across multiple simulations. From
each simulation, a pressure-time history curve is obtained, and key blast parameters,
including arrival time, peak time, peak pressure, decay duration, and impulse,
are extracted. A random forest algorithm is employed, and parameters from the
resulting model are utilized to develop a pressure-time history generation process for
cuboid-shaped charges. This methodology enhances both accuracy and computational
efficiency, providing a robust foundation for further advancements in numerical
simulations for blast resistance design.



2 Methodology

2.1 Conservation equations with ALE formulation

In open fields, an explosion can be modeled as a fluid flow comprising both the
explosive charge and the surrounding air. The governing equations in the fluid domain,
including the conservation equations for mass, momentum, and energy, are expressed
as [15]

0
=PV VoWV, (1)
ov
pE:V-U—i—pb—p(w-V)v, (2)
OFE
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where p is the material density, ¢ is time, v is the material velocity vector, u is the
element velocity vector, w = v — u is the relative velocity vector, o denotes the stress
tensor, b represents the volumetric force vector acting on the fluid elements, and £ is
the energy. The stress tensor o is given by

o= —pl + M(VV+(VV)T>, 4)

where p is the fluid pressure and p is the dynamic viscosity.

To effectively manage large deformations in blast simulations, the Arbitrary
Lagrangian-Eulerian (ALE) formulation combines the Lagrangian and Eulerian
methods [16]. The ALE approach uses the Lagrangian method during small
deformations, preserving mesh-material correspondence, thus simplifying the
conservation equations as

0
==V, (5)
ov
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When severe element distortion occurs, the distorted mesh is updated, and a
remapping step solves the pure advection equations for p, pv, and pF, transferring
material information onto the rezoned mesh. Because w # 0, the advection terms are
reappeared as
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2.2 Machine learning models

In this study, a random forest algorithm is utilized to predict blast parameters using
the geometric variables of the cuboid-shaped charge. The random forest algorithm
is based on a decision tree algorithm, and the decision tree selects a feature and
splitting criterion to partition the input data into smaller subsets, reducing variance in
regression problems. As the splitting process continues, the tree grows deeper. When
a predefined stopping criterion is met, the process stops, forming leaf nodes. The input
data are partitioned into J disjoint regions { Ry, Rs, ..., R}, each corresponding to a
leaf node. The function h(x) of the tree can be written as

h(x) =g ifx€ R,

h(x) =g, ifx € Ry,
(1T)

h(x) =g, ifx€ Ry,

where RR; is the region associated with the j-th leaf node and y; is value assigned
to that node. The random forest regression aggregates multiple decision trees by a
bagging process [17]. Bagging splits data into smaller subsets, randomly inputs them
into decision trees, and synthesizes the output values. If the result from the m-th
decision tree is denoted as h,,(x), the final result f(x) is computed as

FO) =37 D () (12)

where M is the number of decision trees. Machine learning algorithm is trained to
minimize the mean squared error (MSE) loss function, defined as

N
1 2
MSE = N;(yi — () (13)
where NV is the number of test samples. The MSE places a heavier penalty on larger
errors than on smaller ones due to the squared residuals, making the model more
sensitive to outliers.

3 Numerical simulation

3.1 Numerical model

The numerical model is developed based on field blast tests reported in Ref. [14]. The
slabs measured 1,100 x 1,000 x 40 mm? and contained a single layer of reinforcing
bar mesh positioned near the bottom face. The steel bars had a diameter of 6 mm, an
elastic modulus of 210 GPa, and a yield strength of 653.4 MPa. The bars were spaced
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Figure 1: Configuration of numerical model.

at 75 mm intervals. The slabs were simply supported by a steel frame with a span
of 1,000 mm. TNT was used as the explosive charge, with a detonation velocity of
6,730 m/s and a density of 1.6 g/cm?. The standoff distance between the charge and
the slab surface was maintained at 400 mm, while the charge weights were varied at
200 g, 400 g, and 600 g. During the experiments, the maximum blast pressure was
recorded by a sensor mounted on the slab.

The configuration of the numerical model, which consists of both structural and
fluid components, is shown in Fig. 1. In the structural component, the slab and support
are modeled by 8-node hexahedral elements, while the reinforcing mesh is represented
by 2-node beam elements. Instead of sharing nodes, constraints in solid elements
are applied between steel beams and concrete solids to synchronize their movements,
accurately simulating an RC structure. The slab and support are modeled with an
element size of 5 mm, whereas the beam element had an element size of 2.5 mm to
capture the detailed behavior of the reinforcement. In the fluid component, the air
domain is modeled to include both the RC slab and the explosive charge, with an
element size of 5 mm.

The continuous surface cap model (CSCM) is used to accurately simulate the
nonlinear behavior of concrete structures under blast loading conditions [18, 19,
20]. The rebar and steel frame are modeled by a bilinear elastic-plastic model,
commonly employed to simulate isotropic and kinematic hardening plasticity [21].
To simulate the fluid material, an equation of state (EOS) is defined [22]. Air
is modeled by a linear polynomial EOS, whereas the explosive charge behavior is
represented by the Jones-Wilkins-Lee (JWL) EOS. The air domain is modeled by
the null material model, which enables the application of the linear polynomial EOS
without calculating deviatoric stresses. To simulate TNT detonation, a high-charge
burn model is employed based on the research of Wilkins.
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Figure 2: Time history curves for reflected pressure considering charge weight.

3.2 Model verification

The time histories of the reflected pressures and impulses for various charge weights
are shown in Fig. 2. An increase in the charge weight leads to a higher peak pressure
and earlier arrival of the shockwave at the sensor. Heavier charges release more blast
energy, which strengthens the shock front and accelerates its propagation, thereby
reducing the time required to reach the sensor. The pressure then undergoes a decay
phase, which decreases over time.

Experimental measurements of the peak pressure along with the results from
ALE-based high-fidelity numerical models are listed in Table 1. The ALE-based
numerical model considers a cuboid geometry, resulting in an error of less than 5%
for all charge weights. Because the actual shape of the explosives are considered, the
ALE-based numerical simulations provide accurate blast pressure results.

Table 1: Comparison of experimental peak pressures with results from the ALE-based
numerical model [14].

Charge weight (g) Experiment (MPa) Numerical simulation (MPa) Error (%)

200 1.62 1.59 1.69
400 3.60 3.45 4.13
600 5.88 5.96 1.30




4 Machine learning and surrogate model

4.1 Machine learning model and training results

Three input parameters length L, width 1/, and height H are systematically sampled

within realistic manufacturing limits to form the dataset for the machine learning
3 M.
weight and p. the density of charge. The other two vary according to a dimension
ratio that takes 21 distinct values from 1.0 to 3.0 in increments of 0.25 and from 3.0 to
9.0 in increments of 0.5. Each of these dimension ratios is paired with its reciprocal,
yielding a total of 121 unique shapes. When combined with three different charge

weights, 200 g, 400 g, and 600 g, the result is 363 scenarios in total.

models. One dimension is fixed at the base size

where M, denotes the charge

The five blast parameters are set as the output parameters obtained from the
pressure-time history curve. The parameter ¢, is the arrival time of the shockwave,
which marks the moment when the pressure begins to increase. The peak time ¢,
represents the moment at which the pressure reaches its maximum value during the
positive phase. The decay duration ¢; means the interval from the peak pressure to
the moment when the pressure returns to ambient level. The variable P; stands for
the peak pressure, indicating the peak pressure achieved during the blast. Finally, the
impulse /, defined as the area under the pressure-time history curve, quantifies the
total energy transmitted.

Preprocessing consists of three steps. First, the outliers are removed from the
output data. Next, the input variables are standardized. Finally, the output values
are transformed to achieve the desired scale. As the outputs are positive, a logarithmic
transformation is applied to convert them before training the model. After the model
makes results in this transformed space, the values are converted back to their original
scale by applying an exponential transformation. Cross-validation is an additional step
for enhancing the performance of machine learning algorithms. For cross-validation,
the training dataset is partitioned into £ equally sized folds [23]. The function is
trained on k¢ — 1 folds, and the remaining fold is used for validation. Each fold
is tested once and the resulting MSE values are averaged to evaluate the overall
performance of the algorithms. In this study, £ is set as 10.

The scatter plots in Fig. 3 show the performance of the output parameters, and the
results obtained by the random forest algorithm, shown in Fig. 16, are significantly
closer to the reference line, showing superior performance.

4.2 Pressure time history generation process

A random forest algorithm is employed to build a surrogate model that predicts key
blast parameters for various charge configurations. These parameters are used to
construct the positive phase pressure time history in two parts. A cubic equation is
used for the steep pressure rise, and the Friedlander equation is used for the subsequent
decay. From the arrival time ¢, to the peak pressure time t,, the pressure rise is
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Figure 3: Predicted vs. calculated scatter plot of output parameters in random forest
regression.

expressed as

pt)=at—1t,)> t.<t<t, (14)

where a is the cubic coefficient determined by the results of the surrogate model %,,
tp, and the peak pressure P;. The partial impulse during this rise interval is given by

tp
ImCZ/ a(t—ty)?dt. (15)
ta

After the pressure reaches its peak at ¢, the Friedlander equation, which is widely
employed in blast analyses [24, 25], is used to describe the decay from ¢, to ¢, + t4
and is given by

p(t) = Ps (1 — t;dtp> exp[— o (t ;dtpﬂ, t, <t <t,+tq, (16)

where ¢, is the decay duration and « is the decay constant. The impulse in this decay
interval is then computed as

trtta t—t t—t
[decay = / Ps<1 - p) eXp[—Oé < p)] dt. (17)
tp ld tq

The overall positive phase blast load from the arrival time ¢, to the end of the decay is
shown in Fig. 4.

A random sample from the test dataset is selected to evaluate whether the surrogate
model can predict the pressure—time history curve. The sample is a 200 g TNT
charge, and its length is seven times greater than its height. A comparison between
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Figure 4: Schematic of the rise and decay of the positive phase blast pressure.

the pressure-time history curves generated by the surrogate model and those obtained
from the high-fidelity numerical simulations for the three different samples is shown
in Fig. 5. The surrogate model produces pressure-time history curves that closely
match those derived from the ALE-based numerical simulation.

5 Concluding remarks

We develop a surrogate model that efficiently simulates blast loading on RC slabs
while considering the geometry of cuboid-shaped charges. High-fidelity ALE
simulations are conducted with machine learning techniques to create an effective
model. An ALE-based numerical model is developed to simulate blast loading on
an RC slab using cuboid charges of 200 g, 400 g, and 600 g. The model is verified
by comparing peak pressure against experimental data. By systematically varying
the charge length, width, and height, 363 cases are simulated. Key blast parameters,
including arrival time, peak time, peak pressure, decay duration, and impulse, are
extracted to construct a comprehensive dataset for machine learning. Subsequently, a
random forest algorithm is rigorously trained on these data. This carefully optimized
model achieves highly accurate results, as evidenced by the strong alignment between
predicted and simulated blast parameters. The pressure-time history curve is generated
by substituting the random forest-predicted blast parameters into the equation, which
unifies the cubic-Friedlander hybrid equation, producing results closely aligned with
those from ALE simulations.

High-fidelity ALE simulations demonstrate that physics-based numerical methods
can accurately reproduce complex blast phenomena. Specifically, simulations
utilizing the ALE method effectively capture the intricate behavior of blast wave
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Figure 5: Comparison of pressure-time history curves generated by the surrogate
model and numerical simulations.

propagation and its interaction with reinforced concrete slabs. By incorporating
detailed fluid-structure interactions, ALE simulations provide highly accurate results
of peak pressure, achieving excellent agreement with experimental data. These
results confirm that physics-based simulations are essential for reliably predicting
blast effects, particularly when precise evaluation of structural responses is required.
Consequently, physics-based simulations not only provide trustworthy data for
detailed blast analysis but also serve as a foundation for developing efficient surrogate
models.

The hybrid surrogate modeling approach, integrating machine learning results
with the cubic-Friedlander hybrid equation, is verified as an effective methodology
for predicting blast pressure-time histories. By employing key parameters through
the random forest algorithm, including arrival time, peak time, peak pressure,
decay duration, and impulse, in conjunction with the cubic-Friedlander hybrid
equation, the surrogate model produces pressure-time curves closely matching those
obtained from high-fidelity ALE simulations. This combined approach significantly
reduces computational costs while maintaining the accuracy, highlighting its practical
applicability. Ultimately, this surrogate modeling framework can facilitate real-time
blast response analyses and support optimized safety design practices under various
explosive loading conditions.
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