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Abstract 
 

Learning physical models from full-order data has become an effective approach to 

reducing computational costs in various engineering problem. This paper presents a 

data-driven framework for dynamical modeling of parameterized vortex strength. The 

framework employed model-order reduction method with parametric sparse 

identification of nonlinear dynamics (SINDy) to construct a low-dimensional 

dynamical model. The training data covering the parameter space are represented by 

both linear and nonlinear model-order reduction method. The application of vortex 

panel method in vortex strength shows the effectiveness and accuracy of proposed 

framework. 
 

Keywords: potential flow, latent space dynamics identification, data-driven method, 

model order reduction, proper orthogonal decomposition, autoencoder. 
 

1  Introduction 
 

In the modern era, physical simulations play an essential role in significant 

developments in engineering, technology, and science faster than ever before. It 

provides solutions of full-order models (FOMs) or high-fidelity mathematical 

representations of real-world physical systems capturing detailed dynamics with 

minimal simplification. These models are typically derived from first principal 

equations, such as Navier-Stokes equations in fluid dynamics or finite element method 

in structural mechanics. While FOMs provide accurate and comprehensive 

simulations, they often require significant computational resources due to their large 

 

 

A Study on Parametric Latent Dynamics 

Identification for Aerodynamic Flow 

Modelling 

 
Seongwoo Cheon1, Hyejin Kim1, Nghia Nguyen1, Haeseong Cho1, * 

 
1Jeonbuk National University 

Corresponding author: Haeseong Cho, hcho@jbnu.ac.kr 

 

A Study on Parametric Latent Dynamics 

Identification for Aerodynamic Flow Modelling 

 
S. Cheon, H. Kim, N. Nguyen and H. Cho 

 
Jeonbuk National University, 

South of Korea 

 

 

Proceedings of the Eighteenth International Conference on 
Civil, Structural and Environmental Engineering Computing  

Edited by: P. Iványi, J. Kruis and B.H.V. Topping  
Civil-Comp Conferences, Volume 10, Paper 9.1 

Civil-Comp Press, Edinburgh, United Kingdom, 2025 
ISSN: 2753-3239,  doi: 10.4203/ccc.10.9.1 

©Civil-Comp Ltd, Edinburgh, UK, 2025 



2 

 

number of degrees of freedom. As a result, performing full-order simulations for real-

time applications, optimization, uncertainty quantification, or digital twins may be 

impractical. 

To overcome this challenge, several surrogate models or data-driven models have 

been developed to approximate FOMs behaviour while keeping high-fidelity and 

lowering computational cost. One of those models is projection-based reduced order 

models (pROMs), in which the linear or nonlinear compression techniques are 

employed to approximate the full state domains. While the former includes proper 

orthogonal decomposition (POD) [1], and reduced basis method [2], the latter is auto-

encoder [3-5]. The compression-based pROMs have been successfully applied to 

various problems, such as nonlinear heat conduction problem, Boltzmann transport 

problem, Naver-Stokes equation, computational fluid dynamics simulations for 

aerospace, and aero-elastic wing design. pROMs are split in two classes [6]: intrusive 

methods, in which one deals with directly the governing equations, and nonintrusive 

methods that only requires simulation data to approximate the full state fields. 

Because the flexibility of nonintrusive methods by using pure data, in this paper, we 

will focus on developing those methods to approximate the full state field using data 

In terms of nonintrusive methods, numerous approximation techniques are used to 

construct a nonlinear model that forecasts new outputs from new inputs. These include, 

for example, Gaussian processes, Kriging, radial basis functions, and deep neural 

networks. They have been applied to physical problems as mentioned earlier and 

neural networks currently has become the most well-known framework because of 

their wealthy demonstration capability assisted by the universal approximation 

theorem. Nevertheless, these methods somehow exist limitations in means of 

interpretability due to the black-box nature. Furthermore, the generalization of 

surrogate models also is considered.  

To enhance the interpretation and generalization, we employ a data-driven 

framework developed by Fries [7] for dynamical modelling of parameterized vortex 

strength that can compress the entire state field data into a reduced space. There are 

two common different types of compression such as linear and nonlinear. The 

prevalent linear one can be accomplished by the proper orthogonal decomposition 

(POD). The nonlinear one can be realized by the autoencoder (AE) in which the 

encoder and decoder are constructed by neural networks. Indeed, once the 

compression is performed, the data size is reduced significantly. Furthermore, the 

complexity of dynamic systems within the reduced space becomes simpler than that 

of the FOMs. Besides, to achieve simulation data, the panel method is carried out in 

order to resolve the full state field of vortex strength. 
 

2  Methodology 

 

2.1 Panel method 
 

The panel methods assume irrotational and incompressible flow around the airfoil 

configuration. Therefore, they can be used to solve Laplace’s equations for potential 

flow in the vortex field. Considering the constant strength vortex (𝛾) distribution on 

the airfoil surface, the velocity potential can be expressed as: 
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𝜙𝑖
∗ = −

𝛾

2𝜋
∫ tan−1

𝑧

𝑥 − 𝑥0
𝑑𝑥0, (1) 

 

where 𝛾 is vortex strength, and 𝑥 and 𝑧 are collocation points on the surface panel. 

The integral equation can be solved by applying the Dirichlet boundary condition to 

each of the collocation points in Eq. 2, where the total inner potential can be set equal 

to the freestream potential. It is derived from the requirement that the tangential 

velocity on the boundary surface should be defined by freestream and panel geometry. 

For steady flow condition, it can be expressed as Eq. 3. Here, 𝛽𝑖 is an angle between 

the freestream direction and normal direction to the panel as shown in Fig. 1. 

 

𝜙𝑖
∗ = (𝜙 + 𝜙∞) = 𝜙∞ (2) 

 
𝜕𝜙𝑖

∗

𝜕𝑠𝑖
= 𝑉∞ sin 𝛽𝑖 

(3) 

 

 
Fig. 1 Vortex panel distribution over the surface of body 

 

Eq. 1 for the unknown vortex strength on the airfoil surface can be established as 

linear algebraic equation, as shown in Eq. 4 by enforcing the Kutta condition at the 

trailing edge as in Eq. 5. From the solution of linear equation, the pressure distribution 

on the airfoil surface and aerodynamic loads can be evaluated. 

 

∑ 𝐴𝑖𝛾𝑖

𝑁

𝑖=1

= 𝑉∞ 𝑠𝑖𝑛 𝛽 (4) 

 
𝛾1 + 𝛾𝑁 = 0 (5) 

 

2.2 Latent space dynamics identification 
 

Latent dynamics identification is a powerful data-driven approach for discovering 

low-dimensional, interpretable dynamical systems from high-dimensional simulation 

data. In the context of aerodynamic flow modelling, especially in potential flow 

governed by inviscid and incompressible assumptions, this approach enables efficient 

yet accurate characterization of system dynamics across a range of parametric 

conditions. Our study adopts a reduced-order modelling (ROM) strategy that first 
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projects full-order data onto a latent space and then identifies the dynamics in that 

reduced space using sparse regression techniques. 

Let 𝑢(𝑡;  𝜇) ∈ ℝ𝑁 denote the full-order state vector (e.g., surface potential values 

or flow-related observables) at time 𝑡 under parameter vector 𝜇 ∈ ℝ𝑑 , where 𝑁  is 

degrees of freedom due to spatial discretization. The system evolves according to 

unknown high-dimensional dynamics, 

 
𝑑𝑢

𝑑𝑡
=  𝐹(𝑢;  𝜇), (6) 

 

where 𝐹 is typically derived from the governing PDEs (such as the Laplace equation 

in the case of potential flow) and may include non-trivial boundary conditions and 

parametric dependencies (e.g., angle of attack, geometry, panel positions). 

To obtain a tractable model, we first reduce the dimensionality of 𝑢  via a 

projection-based method. Assume 𝑢 ≈  𝑢̅  + Φ𝑧 , where 𝑢̅  is the mean state, Φ ∈
ℝ𝑁×𝑟 is a basis matrix (constructed via proper orthogonal decomposition (POD) or 

autoencoders (AE)), and 𝑧 ∈ ℝ𝑟  are latent coordinates representing the reduced 

dynamics with 𝑟 ≪  𝑁.  

In the case of POD, Φ is obtained by using singular value decomposition of the 

snapshot matrix U = [𝑢1, 𝑢2, … , 𝑢𝑑] 
 

𝑈 = 𝛷𝛴𝑉𝑇 , (7) 

 

where Φ ∈ ℝ𝑁×𝑁 and V ∈ ℝ𝑑×𝑑are left and right singular vector, respectively. The 

basis vector {𝜙𝑖} form the singular value matrix Φ by selecting the leading 𝑟 modes 

corresponding to the largest eigenvalues. Alternatively, autoencoders learn a 

nonlinear encoder 𝐸: ℝ𝑁  →  ℝ𝑟 and decoder 𝐷: ℝ𝑟  →  ℝ𝑁 such that 𝑥 ≈  𝐷(𝐸(𝑥)), 

capturing nonlinear structures in the data. In general, encoder and decoder is trained 

by minimizing those mean square error. 

Therefore, the projection yields the latent space representation, 

 

𝑧(𝑡;  𝜇) = 𝛷ᵀ(𝑢(𝑡;  𝜇) − 𝑢̅). (8) 

 

Our goal is to identify a governing system of the form 

 
𝑑𝑧

𝑑𝑡
=  𝑓(𝑧;  𝜇), (9) 

 

where 𝑓(·) is an unknown, possibly nonlinear vector-valued function capturing the 

evolution of latent variables. Instead of assuming an a priori form for 𝑓, we construct 

a dictionary 𝛩(𝑧) of candidate nonlinear functions (e.g., polynomials, trigonometric 

terms) and identify the active terms using Sparse Identification of Nonlinear 

Dynamics (SINDy) [8]. 

Given latent trajectories 𝑍 =  [𝑧1, … , 𝑧𝑇]𝑇 and their time derivatives 𝑍̇ =
 [𝑧̇1, … , 𝑧̇𝑇]𝑇, the SINDy regression problem is formulated as 
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𝑍̇ =  𝛩(𝑍, 𝜇)𝛯 + 𝜀, (10) 

 

where Ξ ∈ ℝ𝐾×𝑟  is the sparse coefficient matrix that maps features to each latent 

variable's dynamics, and 𝜀  is the residual error. To enforce sparsity in Ξ, an 

optimization problem of the following form is solved 

 

𝑚𝑖𝑛
𝛯

‖𝑍̇ − 𝛩(𝑍, 𝜇)𝛯‖
2

2
+ 𝜆‖𝛯‖1, (11) 

 

where 𝑍 ∈  ℝ𝑀×𝑟 is the latent trajectory matrix collected at 𝑀 time snapshots, Ẋ is 

the corresponding time derivative (computed via numerical differentiation or learned 

jointly), 𝛯 ∈  ℝ𝐾×𝑟  contains the sparse coefficients, and 𝜆  is a regularization 

parameter that promotes sparsity. Each column of 𝛯 represents the dynamics of one 

latent variable as a sparse linear combination of candidate terms. 

Figure 2 illustrates the overall framework of latent space dynamics identification 

based on autoencoder- or POD-based dimensionality reduction followed by sparse 

regression via SINDy. 

 

 
Fig. 2 Overview of latent space dynamic identification 

 

One of the main advantages of operating in the latent space is the ability to model 

long-term flow evolution efficiently, especially for problems where vortical or 

unsteady effects dominate but are still low-dimensional. For example, in our vortex 

panel method-based simulations, the evolution of surface potential coefficients under 

varying angles of attack and time-varying inflow can be captured by a latent system 

with just a few degrees of freedom, without sacrificing accuracy. 

Importantly, this framework is parametrically aware. Training data is generated by 

sampling across the parametric space 𝜇, and the resulting library Θ may be augmented 
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to include parametric terms explicitly, such as linear interactions with 𝜇 or cross-

terms between 𝑧 and 𝜇. This allows the learned dynamical system to generalize across 

parameter values, enabling predictive modelling in unseen scenarios. 

To ensure robustness, we apply a two-level cross-validation scheme: one across 

time (to avoid overfitting local transients), and another across parameter space (to 

ensure generalizability). Reconstruction of the full-order field is achieved through the 

inverse projection 𝑢 ≈  𝑢̅  +  𝑊𝑧, enabling comparison with high-fidelity results and 

error quantification via standard norms (e.g., relative 𝐿2 error). 

Overall, latent dynamics identification using sparse regression in reduced-order 

coordinates offers a scalable and interpretable alternative to black-box sequence 

models such as recurrent neural networks. In the context of aerodynamic flow 

modelling, it provides a principled pathway for real-time surrogate modelling, 

control-oriented representations, and design optimization. 
 

 
 

 

3  Numerical Results 
 

To evaluate the performance of latent space dynamics identification for 

aerodynamic flow modelling, the symmetric airfoil, van de Vooren airfoil with 15% 

thickness, is considered. The chord is unit length and the freestream velocity is 1 m/s. 

The airfoils are uniformly divided into 90 panels to obtain the full order model 

solution. 

The FOMs are solved according to angle of attack 𝛼 ∈ {−10, −9, … ,10}°, and total 

dimension of training data is U ∈ ℝ90×21. The accuracies of frameworks are verified 

for reproduction of training data and it is measured by the normalized root mean 

squared error (NRMSE), which is defined as 

 

𝑒(𝜶) =
1

𝑢𝑚𝑎𝑥 − 𝑢𝑚𝑖𝑛

√
∑ (𝑢𝑖 − 𝑢̃𝑖)2𝑁

𝑖=1

𝑁
. (12) 

 

 

Figure 3 shows the latent space of potential flow and dynamic identification 

according to the angle of attack. In this paper, the vortex strength is compressed into 

latent space 𝑢 ∈ ℝ2×21 using 2 POD basis and the encoder of AE. Using the dynamics 

identification [8], both latent spaces are represented by first order polynomial equation. 

This shows that dynamic identification is able to capture the latent spaces of potential 

flow. 

In Fig. 4, the pressure coefficient distributions of airfoil surface at 𝛼 = 5° obtained 

by both linear and non-linear model order reduction are compared with the 

corresponding FOM solution and analytical solution [9], showing that they are almost 

identical. Figure 5 shows the NRMSE of vortex strength reproduced by each MOR 

methods. The maximum NRMSE of POD is 1.1110-9, while the maximum NRMSE 

for AE is 7.410-3. Therefore, this shows that the frameworks with both MOR 

methods can model the aerodynamic flow based on potential flow.  
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(a) POD (b) AE 

Figure. 3 True and identified latent spaces using MOR methods and SINDy 

 

 

 

 
Figure. 4 Reconstruction of pressure coefficients at 𝛼 = 5° 

 

 

 

 

  
(a) POD (b) AE 

Figure. 5 NRMSE of reproduction of vortex strength according to MOR methods 



8 

 

 

4  Conclusions and Contributions 
 

The application of latent space dynamics identification for aerodynamic flow 

modelling is performed using the penal method of potential flow. The aerodynamic 

flow is modelled by constant strength vortex element of panel method. To represent 

the latent spaces of aerodynamic flow, the linear and non-linear MOR methods such 

as POD and autoencoder are employed, and the latent spaces are identified by first 

order polynomial equation using SINDy.  

The aim is to reproduce the training data in order to evaluate the frameworks using 

both linear and nonlinear MOR methods. For the symmetric airfoil, the training data 

is collected according to the angle of attack, and the present data-driven frameworks 

show that it is able to reproduce the training data with high accuracy, showing that the 

maximum NRMSE is less than 7.410-3. 

In future work, parameterization of both frameworks will be considered to include 

the unsteady potential flow induced by variations in freestream velocity. 
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