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Abstract

We consider the finite element discretization of a fictitious domain formulation for
fluid-structure interaction problems where a distributed Lagrange multiplier is associ-
ated with the kinematic constraint. Fluid and solid equations are solved on independent
meshes and a coupling term takes care of their interaction. In this work we discuss the
mass conservation properties of several combinations of finite element spaces through
some significant numerical tests.

Keywords: fluid-structure interactions, interface problems, fictitious domain method,
Lagrange multiplier, unfitted finite elements, mass conservation.

1 Introduction

The scientific community has a large interest in developing effective numerical meth-
ods for the simulation of coupled and multiphysics problems such as fluid-structure
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interactions, multiphase flows, and thermo-mechanical problems, since they have sev-
eral engineering applications. We mention, for instance, cardiac mechanics, particulate
flows and structural analysis.

The mathematical description of such problems usually couples partial differential
equations of different kinds or involves discontinuous coefficients, hence the com-
putational domain can be interpreted as the union of several regions with evolving
interface. The numerical simulation of this class of problems is challenging from dif-
ferent points of view: for instance, a high resolution discretization of the geometry is
required, and the governing equations may involve nonlinear terms.

During the last decades, a wide range of mathematical approaches have been pre-
sented to tackle the above problems and related issues. The Arbitrary Lagrangian–
Eulerian approach [1, 2] employs meshes matching at the interface, so that kinematic
constraints are satisfied by construction. Nevertheless, strong distortions and time in-
stabilities may appear [3]. For these reasons, unfitted approaches gained popularity.
Among them, we mention the immersed boundary method [4], the fictitious domain
approach [5, 6], the level set method [7] and the Nitsche–XFEM [8].

Our distributed Lagrange multiplier formulation [9] originated from the immersed
boundary method and then evolved towards a fictitious domain framework.

The aim of this work is to discuss the mass conservation properties of our method. It
is well-known from the literature that standard finite element pairs for the incompress-
ible Stokes equations (we mention, for instance, the Hood–Taylor [10], the Bercovier–
Pironneau [11], and the MINI [12] elements) conserve mass only in an approximate
sense since divVh ̸⊂ Qh. This argument is strictly connected with the pressure ro-
bustness property [13]: a finite element pair is pressure robust if the error committed
on the velocity discretization is not affected by the pressure.

It is clear that the construction of conforming div-free finite element spaces is
not trivial. We could resort to the finite element exterior calculus to design suitable
spaces [14], or to Discontinuous Galerkin [15] and virtual element [16] methods,
where the discrete divergence free property is ensured by construction of the spaces.
All these techniques represent viable options, but they require additional effort when
implementing the simulation methods.

There are at least two simple modifications that can be taken into account to im-
prove the mass conservation of standard finite element pairs: the first one consists in
adding the so-called grad-div stabilization [17], while the second one involves enrich-
ing continuous pressure spaces with an additional constant [18,19]. Since the grad-div
stabilization is an artificial penalty term, we decide for the second way. We already
studied the effect of adding a constant to the pressure space in case of the Hood–
Taylor and Bercovier–Pironneau elements [20].

After recalling the main features of our fictitious domain formulation, together with
some computational aspects regarding its discretization in time and space, we compare
and discuss the mass conservation properties of continuous and discontinuous finite
element spaces for the pressure and the distributed Lagrange multiplier.
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Figure 1: Example of geometric configuration. Ω and B are fixed domains, indepen-
dent of time. The fluid dynamics is described with Eulerian coordinates. For
the solid evolution, the Lagrangian framework is preferred: each point s ∈ B
is mapped into a point x ∈ Ωs

t through the map X.

2 The continuous problem

We discuss the finite element discretization of fluid-structure interaction problems
characterized by a thick visco-elastic solid body immersed in a Newtonian fluid. Both
fluid and solid materials are incompressible.

The configuration of the system is described by two non-overlapping time depen-
dent domains Ωf

t ,Ω
s
t ⊂ Rd, d = 2, 3 representing the regions occupied by fluid and

solid at time instant t, respectively. We assume that the region occupied by the union
of fluid and solid regions does not depend on time. We then introduce the fixed domain
Ω = Ωf

t ∪ Ωs
t with the additional simplifying hypothesis that ∂Ω ∩ ∂Ωs

t = ∅. Even if
our model can deal with more complex situations, we restrict ourselves to d = 2. An
example of configuration for the FSI problem is sketched in Figure 1.

The fluid dynamics is governed by the Navier–Stokes equations described in Eule-
rian framework. Let uf denote the fluid velocity and ρf the density, we have

ρf u̇f = divσf in Ωf
t ,

divuf = 0 in Ωf
t ,

(1)

where σf = −pfI+ νf ε(uf ) is the Cauchy stress tensor for Newtonian fluids, which
is expressed in terms of fluid pressure pf , viscosity νf > 0 and symmetric gradient of
the velocity ε(uf ) = (∇uf + (∇uf )

⊤)/2. The second equation in (1) is the mass
conservation equation and corresponds to the incompressibility property of the fluid.

On the other hand, the solid deformation is described in Lagrangian setting. We thus
introduce a reference domain B ⊂ Rd such that the actual configuration of the solid
body Ωs

t can be represented as a mapping of B. Namely, we introduce the deformation
function X(·, t) : B → Ωs

t such that x = X(s, t) for x ∈ Ωs
t and s ∈ B. The solid

material velocity us is then expressed in terms of X as

us(x, t) =
∂X(s, t)

∂t
for x = X(s, t). (2)
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We recall that the solid body consists of incompressible visco-elastic material, thus
divus = 0. Moreover, the associated Cauchy stress tensor σs takes into account
both properties, that is σs = σv

s + σe
s. More precisely, the viscous term is written

as σs = −psI + νs ε(us), where νs > 0 denotes the solid viscosity and ps is the La-
grange multiplier associated with the incompressibility. The elastic component σe

s is
expressed by means of the first Piola–Kirchhoff elasticity tensor P through the follow-
ing relation

P(F) = J (s, t)σe
s(x, t)F−⊤(s, t) for x = X(s, t).

Here F = ∇s X is the deformation gradient and J (s, t) = det(F(s, t)). We obtain the
following model for the solid

ρs
∂2X

∂t2
= divs

(
Jσv

sF−⊤ + P(F)
)

in B,

divus = 0 in Ωs
t .

(3)

Transmission conditions are considered to enforce continuity of velocity and Cauchy
stress along the interface ∂Ωs

t , i.e.

uf = us and σfnf = −
(
σv

s + J −1PF⊤)ns on ∂Ωs
t ∩ Ωf

t , (4)

where nf , ns denote the outward unit normal vectors to fluid and solid domain, re-
spectively. Finally, Equations (1), (3), (4) are completed by suitable initial conditions
and by the no-slip condition for uf on ∂Ω

uf (0) = uf,0 in Ωf
0 ,

us(0) = us,0 in Ωs
0,

X(0) = X0 in B,
uf = 0 on ∂Ω.

We point out that the initial conditions uf,0 = us,0 on ∂Ωs
0.

In order to derive the variational fictitious domain formulation [9], we first extend
the fluid domain Ωf

t to the entire container Ω. Hence, we introduce the extended ve-
locity u and pressure p defined as

u =

{
uf in Ωf

t

us in Ωs
t ,

p =

{
pf in Ωf

t

ps in Ωs
t .

We should take care of the motion of the immersed solid. Then, we impose that the
material velocity of the solid is equal to the velocity u in the fictitious fluid, that is

u(X(s, t), t) =
∂X(s, t)

∂t
for x = X(s, t). (5)

We emphasize that this kinematic constraint is equivalent to (2) within the new frame-
work. At variational level, (5) becomes

c

(
µ,u(X(s, t), t)− ∂X(s, t)

∂t

)
= 0 ∀µ ∈ Λ,
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where Λ is a suitable functional space and c : Λ×H1(B) → R is a symmetric bilinear
form such that c(µ,Z) = 0 ∀µ ∈ Λ implies Z = 0 on B.

The FSI problem in fictitious domain framework reads as follows.

Problem 1 Given u0 ∈ H1
0(Ω) and X0 : B → Ω, ∀t ∈ (0, T ), find u(t) ∈ H1

0(Ω),
p(t) ∈ L2

0(Ω), X(t) ∈ W1,∞(B) and λ(t) ∈ Λ, such that

ρf

(
∂u(t)

∂t
,v

)
Ω

+ b(u(t),u(t),v) + a(u(t),v)

− (div v, p(t))Ω + c(λ(t),v(X(t))) = 0 ∀v ∈ H1
0(Ω)

(divu(t), q)Ω = 0 ∀q ∈ L2
0(Ω)

δρ

(
∂2X

∂t2
,Y

)
B
+ (P(F(s, t)),∇sY)B − c(λ(t),Y) = 0 ∀Y ∈ H1(B)

c

(
µ,u(X(·, t), t)− ∂X(·, t)

∂t

)
= 0 ∀µ ∈ Λ

u(x, 0) = u0(x) ∀x ∈ Ω

X(s, 0) = X0(s) ∀s ∈ B.

The detailed derivation of Problem 1 can be found in [9]. In the above equations,
L2
0(Ω) stands for the subspace of L2(Ω) containing null mean functions. Moreover, we

adopted the notation δρ = ρs − ρf for the gap between solid and fluid density, while
the forms a(·, ·) and b(·, ·, ·) represent diffusion and convection in the fluid domain,
respectively,

a(u,v) = (ν ε(u), ε(v))Ω , b(u,v,w) =
ρf
2
((u · ∇v,w)Ω − (u · ∇w,v)Ω) .

We observe that the viscosity ν takes value νs in Ωs
t and νf in Ωf

t . We define the space
Λ = (H1(B))′ as the dual space of H1(B), and the coupling term c(·, ·) as

c(µ,Z) = ⟨µ,Z⟩ ∀µ ∈ Λ, Z ∈ H1(B)

with ⟨·, ·⟩ being the duality pairing between H1(B) and Λ.

3 Discretization

In this section we describe the discretization of Problem 1 in time and space.
Concerning the time discretization, we consider the Backward Euler scheme on a

uniform partition {tn = n∆t}Nn=0 of the time interval [0, T ].
The space discretization is carried out by mixed finite elements. Let T Ω

h be a tri-
angulation of the fluid domain Ω having size hΩ, and let T B

h be a triangular mesh of
the solid reference domain B with size hB. We introduce four finite dimensional sub-
spaces: Vh ⊂ H1

0(Ω), Qh ⊂ L2
0(Ω), Sh ⊂ H1(B) and Λh ⊂ Λ. More precisely, Vh

5



and Qh are the discrete spaces for the velocity u and the pressure p, respectively, and
must satisfy the discrete inf-sup conditions prescribed for the Stokes problem. On the
other hand, Sh is the discrete space in which we solve the solid unknown X and Λh is
the space for the discrete Lagrange multiplier.

Remark 1 At the discrete level, we identify the duality pairing between H1(B) and
its dual by the scalar product in L2(B) since Λh ⊂ L2(B). As a consequence, the
coupling term is defined as c(µh,Yh) = (µh,Yh)B for all µh ∈ Λh and Yh ∈ Sh.

The fully discrete version of Problem 1 reads as follows.

Problem 2 Given u0
h ∈ Vh and X0

h ∈ Sh, for n = 1, . . . , N find un
h ∈ Vh, pnh ∈ Qh,

Xn
h ∈ Sh, and λn

h ∈ Λh, such that

ρf

(
un+1
h − un

h

∆t
,v

)
+ b(un

h,u
n+1
h ,vh) + a(un+1

h ,vh)

− (div vh, p
n+1
h ) + (λn+1

h ,vh(X
n
h))B = 0 ∀vh ∈ Vh

(divun+1
h , qh) = 0 ∀qh ∈ Qh

δρ

(
Xn+1

h − 2Xn
h +Xn−1

h

∆t2
,Yh

)
B
+ (P(Fn+1),∇s Yh)B

− (λn+1
h ,Yh)B = 0 ∀Yh ∈ Sh(

µh,u
n+1
h (Xn

h)−
Xn+1

h −Xn
h

∆t

)
B
= 0 ∀µh ∈ Λh.

In order to initialize the advancing scheme, the term X−1
h can be computed from

the initial condition u0 as the solution of

u0 =
X0

h −X−1
h

∆t
in B.

We point out that the nonlinear term b(un
h,u

n+1
h ,vh), as well as the coupling terms

(λn+1
h ,vh(X

n
h))B and (µh,u

n+1
h (Xn

h))B, are treated semi-implicitly. In the former case,
we plug un

h in b(·, ·, ·), while in the latter we take into account the position of the
immersed body at the previous time instant through the composition of uh and vh

with the mapping Xn
h. This semi-implicit time stepping scheme is unconditionally

stable [9, Prop. 3], that is no requirements are prescribed on the choice of the time
step ∆t.

The term P(Fn+1) with Fn+1 = ∇s X
n+1
h , which represents the elastic properties

of the solid material, may also be nonlinear. In this case, additional linearization
techniques can be considered depending on the chosen constitutive law or nonlin-
ear solvers, such as the Newton and fixed point methods, can be employed for solv-
ing the equations. Since more general models are not the main object of this inves-
tigation, we will only consider the generalized neo–Hookean linear model, that is
P(Fn+1) = κFn+1, where κ is a positive constant.
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The assembly of the finite element matrix associated with coupling terms like
(µh,vh(X

n
h))B is challenging since it requires the integration of functions defined

over grids independent of each other. Indeed, µh ∈ Λh is defined on the solid refer-
ence mesh T B

h , whereas vh ∈ Vh is constructed on T Ω
h . Moreover, the composition

of vh with the mapping Xn
h takes care of the actual position of the solid body. We

discussed computational and theoretical aspects regarding this procedure in [21, 22].
In particular, we can either compute exactly such terms by implementing a compos-
ite quadrature rule on the intersection between the image of T B

h through X and the
background mesh T Ω

h or, alternatively, we can skip the computation of the intersec-
tion and take into account the presence of a quadrature error. In this work we compute
the coupling terms by means of the exact procedure.

We discretize the fluid sub-problem by the Bercovier–Pironneau element [11]: for
the velocity, we consider the P1isoP2 space, which mimics a quadratic approximation
by employing piecewise linear elements, while for the pressure we consider both the
standard continuous piecewise linear element P1 and its enhanced version P1 + P0.
For the solid deformation, we choose again the P1 element.

As mentioned in the introduction, we work with both continuous [23] and dis-
continuous Lagrange multiplier spaces [24], and study their effect in terms of mass
conservation. The choice of a discontinuous Λh is admissible since the coupling form
is the scalar product in L2(B).

Here is a summary of all the finite elements combinations we are going to use for
our numerical tests:

• Element 1: P1isoP2 − P1 − P1 − P1,

• Element 2: P1isoP2 − (P1 + P0)− P1 − P1,

• Element 3: P1isoP2 − P1 − (P1 + B3)− P0,

• Element 4: P1isoP2 − (P1 + P0)− (P1 + B3)− P0.

We observe that, when a piecewise constant element is considered for the Lagrange
multiplier, the solid space Sh must be enriched by the space B3 of local cubic bubbles
vanishing at the boundary of each element. This enrichment is required to ensure the
stability of the discrete scheme [24].

4 Numerical tests

In this section we present two numerical tests to discuss the mass conservation prop-
erties of Elements 1–4.

4.1 Stationary problem: the circle

We first consider a steady-state version of Problem 2 to study the convergence of the
method with respect to h−refinement. The fluid domain Ω is the unit square, while
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Figure 2: Convergence plots for the immersed circle (stationary case).

the immersed solid is the circle Cr with radius r = 0.2 and center at (0.5, 0.5). The
reference and actual configurations of the solid body coincide, that is B = Ωs

0. The
fluid dynamics is governed by the Stokes equations, while the solid is made of linear
elastic material with coefficient κ = 1. We set the right hand side in such a way that
the following solution is obtained:

u1(x, y) = 2x2y(x− 1)2(y − 1)2 + x2y2(2y − 2)(x− 1)2,

u2(x, y) = −2xy2(x− 1)2(y − 1)2 − x2y2(2x− 2)(y − 1)2,

p =

{
sin(πx) sin(πy)− 4

π2 +
1
2

in Ωs

sin(πx) sin(πy)− 4
π2 − π

2(25−π)
in Ωf ,

X(s1, s2) =
(
s41 − 2s31 + s21,−2s32 + 3s22 − s2

)
,

λ(s1, s2) = (s2 sin(s1), s2 cos(s1)) ,

(6)

where x = (x, y) ∈ Ω and s = (s1, s2) ∈ B.
Convergence plots for u, p, X and div(u) are collected in Figure 2. We observe

that all errors decay with the expected rate, that is 1 for u, X, div(u) and 1/2 for the
pressure due to its singularity at the interface. The choice of a discountinous pressure
space (Elements 2 and 4) slightly improves the error of the pressure, while the er-
ror of the deformation X is rather better when the Lagrange multiplier is continuous
(Elements 1 and 2).
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Figure 3: Velocity streamlines and evolution of the annulus.
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4.2 Time dependent problem: the annulus

We then consider a time dependent problem to study the mass conservation. The fluid
dynamics is governed by the Navier–Stokes equations in Ω = [0, 1]2. The immersed
solid is a linear elastic annulus centered at (0.5, 0.5) and having elasticity parameter
κ = 0.2. The solid reference domain corresponds to the annulus at rest, i.e. B = {s ∈
R2 : 0.125 ≤ |s| ≤ 0.25}. Fluid and solid materials have the same viscosity ν = 0.01,
but different densities ρf = 1.0, ρs = 1.1.

At the beginning of the simulation, the fluid is stationary (u0 = 0), while the an-
nulus is stretched with initial deformation given by X0 =

(
s1
1.4

, 1.4 s2
)
. The internal

elastic forces make the annulus returning to its resting configuration, which originates
the motion of the fluid.

We study the evolution of the system in the time interval [0, 7] by choosing ∆t = 0.1
and ∆t = 0.01. Moreover, three spatial resolutions are considered: coarse test (hΩ =
1/32, hB ≈ 1/16), medium test (hΩ = 1/64, hB ≈ 1/32), and fine test (hΩ = 1/128,
hB ≈ 1/64). Some snapshots are collected in Figure 3 for ∆t = 0.01, hΩ = 1/128,
hB ≈ 1/64 and Element 2.

In Figure 4, mass conservation is studied by measuring the relative volume change
1− |Ωs

t |/|Ωs
0|, where |Ωs

t | denotes the area of the solid at the time instant t. In general,
the larger area variation happens during the initial phase of the simulation (t ≤ 3), in
correspondence of larger solid deformations. From the plots, it is clear that Element 2
provides better conservation properties than the other elements: indeed, for Element 2,
the maximum variation is less than 5 × 10−3%, whereas for Elements 1, 3, 4 the
variation is around 5 × 10−2%. We observe that the behavior does not change when
meshes are refined. We also highlight that the choice of a discontinuous Lagrange
multiplier space Λh (Elements 3, 4) does not improve mass conservation. Thus, in
agreement with [20], only a discontinuous pressure element gives better conservation.
A detailed analysis of Element 2 is reported in Figure 5: when ∆t = 0.1, the volume
change is less than 4× 10−3%, while for ∆t = 0.01, it is less then 1× 10−3%. Thus,
the mass conservation is strictly related to the choice of time step.

We also analyze the behavior of div(uh) by computing its L2−norm in time, as
reported in Figure 6. Clearly, ∥ div(uh)∥0,Ω slightly reduces when refining the meshes.
We notice that, for all the three geometric resolutions, Elements 2 and 4 perform better
since the maximum value reached by ∥ div(uh)∥0,Ω is half than the maximum value
obtained for Elements 1 and 3. This fact is clearer by looking at Figure 7. Elements 2
and 4 provide equivalent results thanks to the fact that the pressure is discontinuous.

5 Concluding remarks

We considered a fictitious domain formulation for fluid-structure interaction problems.
Fluid and solid equations are solved on two independent meshes and a distributed
Lagrange multiplier is responsible for their coupling.
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Figure 4: Volume change of the immersed annulus during the evolution of the system.
Comparison of Elements 1–4 for three different geometric resolutions and
time step ∆t = 0.1 (solid lines), ∆t = 0.01 (dashed lines).

Figure 5: Volume change for Element 2 for the three mesh resolutions and time step
∆t = 0.1 (solid lines) and ∆t = 0.01 (dashed lines).

Figure 6: Norm of divuh(t) during the evolution of the annulus system. Compari-
son of Elements 1–4 for three different geometric resolutions and time step
∆t = 0.1 (solid lines), ∆t = 0.01 (dashed lines).
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Figure 7: Detail of Figure 6, norm of divuh(t) during the evolution of the annulus
system for ∆t = 0.1 (solid lines) and ∆t = 0.01 (dashed lines). Top line:
Elements 1, 3 (continuous pressure elements), Elements 2, 4 (discontinuous
pressure elements).

We focused on the finite element discretization and we discussed mass conservation
properties of our formulation.

After recalling that popular finite element pairs for the Stokes equations are not
divergence-free, we considered four different combinations of elements with continu-
ous and discontinuous spaces for pressure and Lagrange multiplier.

Our numerical investigation confirmed that the choice of a discontinuous pres-
sure space improves both mass conservation and divergence-free properties of the
Bercovier–Pironneau element. A discontinuous multiplier space does not give a clear
improvement in this regard, but this may be due to our specific choice of Stokes ele-
ments. Further investigation will focus on different types of finite element spaces, by
considering both divergence free and higher order discretizations.
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