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Abstract

We consider a fluid structure interaction problem consisting of a channel with an elas-
tic wall which deforms due to the flow of an incompressible fluid. The proposed
method consists in the use of a fictitious domain approach so that the fluid domain
is extended outside the channel and the structure is then immersed in the fluid. This
allows to avoid the construction of a time dependent grid fitted with the position of
the structure. Our results are in good agreement with those provided by a remeshing
technique.

Keywords: fluid structure interactions, fictitious domain method, immersed boundary
method, finite elements, incompressible fluid, elastic response.

1 Introduction

Fluid-structure interaction is a fundamental research field in engineering and applied
sciences, as it analyzes the dynamic interactions between fluids and solid structures
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(see, e.g., [1–4]) and a thorough understanding of these phenomena is essential in
numerous applications, ranging from the stability of aerodynamic structures to car-
diovascular biomechanics.

The immersed boundary method, represents an early and influential approach for
simulating fluid-structure interactions. This method has been successfully applied
to simulate blood flow around simplified heart valve geometries, demonstrating the
method’s ability to handle fluid-structure interactions in biomedical scenarios [5]. In
[6,7], the authors developed and analyzed a formulation based on the fictitious domain
method [8, 9] that uses a Lagrange multiplier within the immersed boundary method.

In this framework, the fictitious domain method emerges as an effective approach
for simulating fluid-structure interaction problems, especially in scenarios involving
big deformations of solid structures. This method extends the fluid domain to include
the regions occupied by solid structures, facilitating the modeling of interactions with-
out the need for continuous remeshing during simulations. This approach allows to
use grids in the solid and in the fluid domains totally independent from each other,
reducing the errors associated with remeshing. The price to pay are coupling terms
which involve functions defined on the two meshes.

Our present work focuses on the application of the fictitious domain method to
model fluid-structure interaction in an elastic channel. Specifically, we want to eval-
uate the performance of this method in simulating the behavior of a fluid interacting
with a deformable channel wall, considered as a thin elastic structure of codimen-
sion 1. Through a series of numerical simulations, we analyze the effectiveness of
the method in capturing key physical phenomena such as wall deformation, and flow
characteristics. The aim is to contribute to the development of a computational tool
for simulating fluid-structure interaction systems, particularly in biomedical and engi-
neering applications.

2 Problem setting

We consider, for the fluid motion, a two-dimensional domain Ωf(t), evolving in time
t, with t ∈ [0, T ]. The domain Ωf(t) is bounded by different types of boundaries, each
playing a specific role in the fluid dynamics.

The fluid inlet boundary is denoted with Γf
in while Γf

out represents the outlet bound-
ary. Additionally, the lower boundary Γf

wall is assumed to be a fixed wall in this study.
However, this approach can be extended to consider Γf

wall as an axis of symmetry of a
real system.

The upper boundary, denoted as Σ(t), represents an elastic wall that confines the
fluid domain and evolves over time due to fluid motion, requiring a coupled fluid-
structure interaction approach.

To address this problem, we adopt an approach that introduces a fictitious domain
Ωfd(t), which extends the real domain Ωf(t) and serves as a useful computational tool.
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This fictitious domain Ωfd(t) is assumed to be filled with the same fluid and is bounded
at the lower side by Σ(t) and at the other sides by Γfd

out and Γfd
wall.

We want to formulate an appropriate method with well-posed boundary conditions,
ensuring that the solution in Ωfd(t) remains purely auxiliary from a computational
perspective and does not influence the physical results of interest in Ωf(t).

Therefore, we consider a fixed bounded rectangular domain Ω ⊂ Rd (with d = 2)
with a Lipschitz boundary Γ = ∂Ω. Inside Ω, a thin elastic structure Σ(t) of codimen-
sion 1 is immersed, evolving over time t. The presence of this structure creates the
partition of Ω into the two subdomains Ωfd(t) and Ωf(t), s.t. Ω = Ωfd(t) ∪ Ωf(t),
and the interface Σ(t) separates these subdomains (see Figure 1). Moreover, the fixed
boundary Γ is composed by distinct parts: Γ = Γf

in ∪ Γf
wall ∪ Γf

out ∪ Γfd
out ∪ Γfd

wall.

 

Ωfd(𝑡) 
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Figure 1: Geometrical setting for the fluid-structure interaction problem.

To describe the motion of the structure, we adopt the Lagrangian framework. Let Σ
be a reference domain, corresponding to the rest position of the structure, and X ∈ Σ
be the Lagrangian coordinate. We introduce a displacement field d : Σ → Rd, which
defines the deformation mapping ϕ : Σ → Σ(t) as follows

ϕ(X, t) = I(X) + d(X, t) for X ∈ Σ, (1)

where I is the identity function on Σ. We assume that this rest position corresponds
to the horizontal segment [0, L], and L stands for the length of the rectangular fixed
domain Ω.

Denoting with x = (x1, x2) the Eulerian coordinate, the velocity field u(x, t) and
pressure field p(x, t) are defined in the entire computational domain Ω and satisfy the
fluid equations, treated in Eulerian framework.

In this way, the structure, which is assumed to exhibit elastic behavior, interacts
with the fluid through a set of coupling conditions that ensure velocity continuity and
force equilibrium, as presented below.
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2.1 Governing equations

The evolution of the system, representing the fluid-structure interaction problem, is
governed by the equations presented in this section, for both the fluid and solid do-
mains, as well as the coupling conditions at the interface.

2.1.1 Fluid sub-problem

We assume that the fluid dynamic is governed by the incompressible Navier-Stokes
equations: {

ρf (∂tu+ u · ∇u)−∇ · σf = 0 in Ω,

∇ · u = 0 in Ω,
(2)

where ρf is the fluid density and σf denotes the Cauchy stress tensor: σf := −pI +
2µϵ(u). Here µ stands for the dynamic viscosity coefficient, specific of the fluid and
ϵ is the strain tensor ϵ(u) := 1

2

(
∇u+∇uT

)
.

2.1.2 Solid sub-problem

The elastic structure is governed by the structural dynamics:{
ρs ε ∂tḋ+ Ld = fΣ on Σ,

∂td = ḋ on Σ,
(3)

where ρs is the solid density and ε represents the real thickness of the thin structure,
treated in the present work as a codimension-1 manifold. Moreover, we assume that
the operator Ld accounts for the internal elastic forces described in the setting of the
linear elasticity. In particular, we consider

Ld = −κ∆d,

where κ is the constant Lamé coefficient, computable through to the Young’s mod-
ulus (E) and Poisson’s coefficient (ν), specific to the elastic material: κ = εE

2(1+ν)
.

The quantity fΣ represents the resultant force term applied on the surface Σ, which in-
cludes both the external forces acting on the structure, assumed negligible in our case,
and the contribution of the fluid-structure interaction forces arising from the coupling
conditions, which is therefore treated as an unknown of the problem.

2.1.3 Interface coupling conditions

To ensure the proper interaction between the fluid and solid domains, we impose the
following coupling conditions at the interface:

ϕ = I+ d on Σ,

u ◦ ϕ = ḋ on Σ,∫
Σ
fΣ ·w = −

∫
Σ(t)

JσfnΣ(t)K ·w ◦ ϕ−1(·, t) ∀w : Σ → Rd smooth,
(4)
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where, J·K denotes the jump across the interface, while nΣ(t) is the unit normal vector
to the interface Σ(t), and σfnΣ(t) represents the normal stress across the interface.

2.1.4 Boundary conditions

To properly complete our model problem, we impose suitable boundary conditions
on the external domain boundary, to ensure that the solution of the problem in the
fictitious part of the domain Ωfd(t) does not affect the physical part of interest Ωf(t).

In particular, at the inlet boundary Γf
in, we impose:

u · nf,in = uin, nf,in · (σftf,in) = 0 on Γf
in, (5)

where uin is the inlet profile, nf,in the unit normal vector to Γf
in and tf,in the unit tangent

vector along Γf
in,

On the boundaries Γf
out and Γfd

out, the natural choice is the homogeneous Neumann
condition and, denoting with nout the unit normal vector to Γf

out ∪ Γfd
out, we can write:

σfnout = 0 on Γf
out ∪ Γfd

out. (6)

Moreover, on the wall boundaries Γf
wall ∪ Γfd

wall, we impose homogeneous Dirichlet
condition, enforcing a no-slip condition on the velocity field:

u = 0 on Γf
wall ∪ Γfd

wall.

Regarding d, at X = 0 we impose a homogeneous Dirichlet condition on the entire
displacement vector, and at X = L, we fix the first component to be zero, while the
second one satisfy a natural Neumann condition,

d = 0 at X = 0, d1 = 0,
∂d2
∂X

= 0 at X = L.

2.1.5 Initial conditions

The system is completed with the following initial conditions regarding fluid veloci-
ties, as well as the structure displacements and structure velocities:{

u(·, 0) = u0 in Ω,

d(·, 0) = 0, ḋ(·, 0) = u0 on Σ.

where u0, is the given initial conditions for the fluid velocity. We assume that the
structure is initially at rest, while its time derivative should be equal to the fluid initial
velocity, as prescribed in (4).
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2.2 Functional spaces and weak formulation

In view of the finite element discretization, we write the problem in weak form. We
set:

V =
{
v ∈ H1(Ω) : v = 0 on Γf

wall ∪ Γfd
wall

}
,

V0 =
{
v ∈ V : v · nf,in = 0 on Γf

in

}
,

W =
{
w ∈ H1(Σ) : w(0) = 0 and w1(L) = 0

}
,

Λ = H−1/2(Σ)d.

Moreover, for µ ∈ Λ and y ∈ H1/2(Σ)d, we set

c(µ,y) := ⟨µ,y⟩ ,

where ⟨·, ·⟩ stands for the duality pairing between Λ and H1/2(Σ)d. Thus, we can
enforce the continuity of velocity between the fluid and the structure (see (4)) in weak
form as:

c(µ,u ◦ ϕ− ḋ) = 0 ∀µ ∈ Λ.

Starting from the governing equations presented in Section 2.1, we multiply by
suitable functions v, q, and w and exploit integration by parts. Hence, for the fluid,
taking into account the boundary conditions on Γ, we have for all v ∈ V0 and q ∈
L2(Ω,

ρf (∂tu,v) + b(u,u,v) + af (u, p;v, q)−
〈
JσfnΣ(t)K,v

〉
= 0, (7)

where (·, ·) denotes the L2 inner product on the appropriate domain, and

b(u,v,w) :=
ρf

2
((u · ∇v,w)− (u · ∇w,v)) ,

af (u, p;v, q) := 2µ (ϵ(u), ϵ(v))− (p,∇ · v)− (q,∇ · u).

The dynamics of the thin elastic structure can be rewritten, for all w ∈ W, as

ρsε(∂tḋ,w)Σ + as(d,w) = (H1(Σ))′ ⟨fΣ,w⟩H1(Σ) , (8)

where as(d,w) := κ(∇d,∇w)Σ.
Finally, to ensure the proper coupling of the interaction forces between the fluid

and the structure, we introduce the Lagrange multiplier λ ∈ Λ and set λ = fΣ.
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2.3 Weak formulation of the problem

The weak formulation of our model problem reads: given u0, ∀t ∈ (0, T ), find u(t) ∈
V, with u(t) · nf,in = uin on Γf

in, p(t) ∈ L2(Ω), d(t) ∈ W and λ(t) ∈ Λ, such that

ρf (∂tu(t),v) + b(u(t),u(t),v) + af ((u(t), p(t)), (v, q))

+ c(λ(t),v ◦ ϕ(t)) = 0 ∀(v, q) ∈ V0 × L2(Ω),

ρsε(∂tḋ(t),w)Σ + as(d(t),w)− c(λ(t),w) = 0 ∀w ∈ W,

c(µ, (u ◦ ϕ)(t)− ḋ(t)) = 0 ∀µ ∈ Λ,

ḋ(t) = ∂td(t),

ϕ(t) = I+ d(t) on Σ.

(9)

This system encapsulates the interaction between the fluid domain Ω and the immersed
elastic structure Σ(t), ensuring both dynamic coupling and mechanical equilibrium.

3 Numerical method

For the numerical discretization of the first equation in (9), we construct a fixed back-
ground mesh, which does not need to conform to the moving interface Σ(t). Let Th be
a shape regular triangulation of Ω, with mesh size h. Additionally, a separate 1D mesh
is defined on the reference domain Σ by subdividing it in a finite number of intervals.

The discrete velocity field uh belongs to the finite element space Vh ⊂ V, con-
taining continuous piecewise quadratic functions enriched with bubble functions. The
pressure p is discretized in Qh ⊂ L2(Ω), using piecewise linear discontinuous el-
ements. The pair (Vh, Qh) satisfies the inf-sup stability condition [10], ensuring a
stable mixed formulation. The displacement of the structure d is approximated in the
space Wh ⊂ W, using P2 elements.

Finally, the discrete Lagrange multiplier λh, associated to the kinematic coupling
condition, belongs to the space Λh ⊂ Λ and is composed by continuous piecewise
quadratic elements.

We choose quadratic elements for the fluid velocity and for the displacement to cap-
ture fine-scale fluid and structure dynamics, while the discontinuous piecewise linear
pressure elements provide flexibility in handling interactions and potential jumps at
the fluid-structure interface.

For time discretization, we use a modified backward Euler scheme, which incorpo-
rates the interface position and the velocity at the previous time step in the coupling
and in the convection term, respectively. Given a uniform time step ∆t = T/M ,
where M is a positive integer, we denote the discrete time levels as tn = n∆t and we
can adopt the approximations: ∂tun

h ≈ un
h−un−1

h

∆t
, and ∂tdn

h ≈ dn
h−dn−1

h

∆t
.

In this way, we can write the discrete formulation of Problem (9) presented in
Section 2.3: given u0, for n = 1, . . . ,M , find un

h ∈ Vh, with un
h · nf,in(tn) = uin on
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Γf
in, pnh ∈ Qh, dn ∈ Wh and λn

h ∈ Λh, such that

ρf
(
un
h − un−1

h

∆t
,vh

)
+ b(un−1

h ,un
h,vh) + af ((un

h, p
n
h), (vh, qh))

c(λn
h,vh ◦ ϕn−1

h ) = 0 ∀(vh, qh) ∈ Vh ×Qh,

ρsε

(
ḋn
h − ḋn−1

h

∆t
,wh

)
Σ

+ as(dn
h,wh)− c(λn

h,wh) = 0 ∀wh ∈ Wh,

c(µn
h,u

n
h ◦ ϕn−1

h − ḋn
h) = 0 ∀µh ∈ Λh,

ḋn
h =

dn
h − dn−1

h

∆t
,

ϕn
h = I+ dn

h.
(10)

3.1 System matrix

At each time step, System (10) corresponds to the following linear system:
A(un−1

h ) B⊤ 0 L⊤
f

(
ϕn−1

h

)
B 0 0 0

0 0 As −L⊤
s

Lf

(
ϕn−1

h

)
0 − 1

∆t
Ls 0



un

pn

dn

λn

 =


f
0

g

h

 (11)

and we employ a monolithic approach to solve this problem, ensuring both robustness
and numerical stability.

Each block in global matrix (11) corresponds to a different physical contribution,
Denoting with φ, ψ, χ and ξ the basis functions, of Vh, Qh, Wh, Λh, respectively,
the matrices appearing in (11), have the following elements:

(
A(un−1

h )
)
i,j

=
ρf

∆t

(
φi,φj

)
+ b(un−1

h ,φj,φi) + 2µ
(
ϵ(φi), ϵ(φj)

)
,

(B)k,i = −(∇ ·φi, ψk),

(As)i,j =
ρsε

∆t 2
(
χi,χj

)
Σ
+ κ(∇χj,∇χi)Σ,(

Lf

(
ϕn−1

h

))
ℓ,j

= (ξℓ,φj

(
ϕn−1

h

)
Σ
, (Ls)ℓ,j = (ξℓ,χj)Σ.

On the right-hand side, the forcing terms are given by:

fi =
ρf

∆t

(
φi u

n−1
h

)
, gi =

ρsϵ

∆t 2
(
χi

(
2dn−1

h − dn−2
h

))
, hℓ = − 1

∆t

(
Ls d

n−1
h

)
ℓ
.
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4 Numerical results

In the numerical tests, among the various possible engineering applications, we ap-
ply the method to the case of a venous blood vessel, following the benchmark data
provided by [11]. These parameters include the physical characteristics of blood, the
mechanical properties of the vessel wall, and the geometric dimensions of the vessel.

Blood is treated as an incompressible Newtonian fluid with a density ρf = 1.0 ×
103 kg/m3 and a dynamic viscosity of µ = 35.0 × 10−3 Pa · s.

The vessel wall is modeled as a thin, elastic structure with a Young’s modulus of
E = 75.0 × 103 Pa and a Poisson’s ratio of ν = 0.5. The wall thickness is set to
ε = 1.0 × 10−3 m, leading to an effective elastic coefficient κ = 25.0 Pa · m. The
density of the vessel wall is ρs = 1.1 × 103 kg/m3, a typical value for biological
soft tissues.

The vessel under consideration has a length of L = 6.0 × 10−2 m and a diameter
of H = 1.0 × 10−2 m, which are representative dimensions for venous segments.

The numerical parameters include a time step of ∆t = 5.0 × 10−3 s, ensuring
adequate temporal resolution for capturing transient effects in the simulation.

We use two different velocity profiles at the inlet. The first one is constant in time
and has the following parabolic profile:

uin,s(x2) = − 4umean

H2
x22 +

4umean

H
|x2|,

where umean is the mean velocity of the fluid, set to 0.20 m/s. The second one models
a pulsatile flow, and is defined as:

uin,p(x2, t) = uin,s(x2) + 0.4 max
(
0, sin

(
2πt

Tpulse

))
uin,s(x2), (12)

and Tpulse represents the characteristic period of the pulsatile flow, assumed equal to
Tpulse = 0.6 s. In this way, it is possible to incorporate both a baseline steady flow
and a pulsatile perturbation. A visualization of the pulsatile inflow is presented in Fig-
ure 2. This approach is designed to enforce a physiologically relevant inlet condition,
capturing the temporal pulsation of the flow and the interaction with the elastic vessel,
with enhanced realism.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
t [s]

0.2

0.25

u
in

;p
[m

/s
]

Figure 2: Inflow velocity profile at x = (0,−0.005).

Moreover, to solve the problem numerically, we consider a rectangular domain
Ω = [0, L] × [0, 2H], and we use a triangular mesh based on a structured grid with
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36 subdivisions along the horizontal direction and 12 subdivisions along the vertical
direction. The triangulation is constructed by first forming a regular grid of squares
and then introducing diagonals within each square to obtain triangles.

Additionally, the midpoints of the vertical edges are connected by a horizontal
segment [0, L], representing the resting structure Σ. This horizontal segmentation
consists of 35 subdivisions, forming an independent 1D mesh. As a result, the two
meshes remain independent from each other (Figure 3).

0 0.01 0.02 0.03 0.04 0.05 0.06
-0.01

0

0.01

Figure 3: The two-dimensional mesh in Ω is displayed in blue, while in red is de-
picted the horizontal segment corresponds to Σ, with the intervals of its
one-dimensional mesh.

All numerical test are conducted with FreeFEM [12] and the graphical outputs are
generated using ffmatlib and MATLAB [13].

4.1 Comparison with remeshing strategy for fluid-structure inter-
action

A strongly coupled approach to fluid-structure interaction ensures consistency of the
meshes between the fluid and structural domains. This method employs an iterative
resolution, where fluid stresses drive solid deformation, altering the domain geome-
try and requiring continuous mesh updates. In turn, structural motion influences fluid
behavior, necessitating kinematic coherence. The process alternates between solv-
ing the elastic problem on Σ and fluid equations in Ωf(t), remeshing iteratively until
convergence is reached.

To assess the accuracy of the proposed fictitious method, we compare the results
with those obtained using a classical numerical approach, based on a remeshing tech-
nique directly implementable in FreeFEM. For this comparison, we neglect the con-
vection term in Equation (7), and we consider in Equation (5) uin = uin,s(x2). Starting
from u0 = (umean, 0) in Ωf(t) and only for the fictitious method considering also
u0 = 0 in Ωfd(t), the simulation runs for a time t = 0.5 s.

The comparison focuses on three key quantities: the fluid velocity, the fluid pres-
sure, and the vertical displacement of the elastic structure. These quantities are eval-
uated at various representative points within the computational domains. Table 1
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presents the numerical values obtained from both methods, and the results indicate that
the proposed method provides a close approximation to the expected pressure distri-
bution while maintaining comparable velocity accuracy. The structural displacement
shows slight differences, although not physically relevant, which can be attributed to
differences in numerical treatment at the fluid-structure interface.

Point |u| (m/s) p (Pa) d2 (×10−4 m)
|u|F |u|R | |u|R−|u|F| |

|u|F
pF pR

| pR−pF |
| pF | d2F d2R

| d2R−d2F |
|d2F |

(0.03,−0.005) 0.1970 0.1969 0.0005 3.2252 3.2262 0.0003 – – –
(0.04,−0.005) 0.1960 0.1959 0.0005 2.1301 2.1524 0.01 – – –
(0.05,−0.005) 0.1953 0.1957 0.002 1.0456 1.0786 0.03 – – –

0.03 – – – – – – 1.225 1.498 0.22
0.05 – – – – – – 1.355 1.727 0.27

Table 1: Comparison of values and relative discrepancies of velocity, pressure, and
displacement at selected spatial points between the fictitious method (F) and
the classical method with remeshing (R) (the first points are located in the
fluid and the coordinates are referred to Cartesian coordinates x, while the
last two points are located on Σ with Lagrangian coordinate L).

4.2 Simulation of a pulsatile flow

In this test we consider the fictitious domain method with fully unsteady Navier-Stokes
equations for the fluid, and setting in Equation (5) uin = uin,p(x2, t).

As shown in Figure 4, spurious numerical oscillations occur near the outflow, in-
deed, to properly handle this type of artificial boundary and prevent unphysical re-
flection phenomena, we follow the approach proposed in [14]. A suitable terms is
introduced to manage the pressure drop. Setting the data-driven value, estimated in
relation to the shape and measure of the boundary Γf

out ∪ Γfd
out, Vref = 0.9 × 10−2 m/s

as a reference velocity, we add an extra term to the matrix A in (11), i.e., A + Vf
out,

and Vf
out has the following elements:(

Vf
out

)
i,j

=
1

2
ρf Vref

∫
Γf

out∪Γfd
out

|φj| (φi · nout) .

In Figures 5, we display the fluid velocity and structural deformation progress dur-
ing the evolution of the system, in response to inlet velocity variations. At t = 0.15 s,
following the initial acceleration phase, the evolving flow field induces structural de-
formation. By t = 0.30 s, the inlet velocity reaches 0.20 m/s, leading to a slower flow
and causing the structural deformation to shift downward from its rest position and
until t = 0.60 s the system maintains this velocity values. At t = 0.75 s, a new ac-
celeration phase intensifies fluid forces, further increasing flow velocity and structural
deformation.

The evolution of the interface deformation is illustrated in Figure 6: the structural
response over time is consistent with the periodic velocity profile in Equation (12) at
inflow (as seen in Figure 2).
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Figure 4: Velocity first component u1, |u|, velocity vectors and elastic structure posi-
tion (depicted in red) at t = 0.15 s, with homogeneous Neumann boundary
condition on Γf

out ∪ Γfd
out on the left, and with the additional term on outflow

boundary on the right.

Figure 5: Velocity values |u|, velocity vectors and elastic structure position (depicted
in red) for various fixed times, for the test in Section 4.2.
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Figure 6: Superimposed interface profiles for various time steps on the left and the
evolution of d2 over time in L = 0.06 on the right.

5 Conclusions

We consider the flow of a Newtonian fluid in a channel with deformable walls. The
deformation of the solid wall is governed by a linear elasticity model. In order to avoid
the need of adapting the mesh in the moving fluid region, we use a fictitious domain
approach. This consists in extending the Navier-Stokes equations in a fixed domain
containing both the fluid and the solid domains, and recovering the physical solution
by the addition of a Lagrange multiplier associated with the continuity constraint for
the velocities. In order to prevent spurious effects in the physical domain, we introduce
a modification of the Neumann conditions at the outflow boundary.

The proposed method is applied to the case of blood flow in a venous vessel, using
physiologically relevant parameters. The simulations enables the capture of both the
fluid velocity evolution and the deformation dynamics of the elastic wall, providing a
comprehensive description of the fluid–structure interaction. The comparison of this
approach with a classical remeshing-based method presents a satisfactory agreement,
supporting the validity of the proposed formulation.

It turns out that the fictitious domain approach may simplify the numerical dis-
cretization, since it avoids the construction of a fluid mesh fitted with the deformation
of the solid which can be computationally expensive. On the other hand this approach
requires to compute the so-called coupling matrix which takes into account the rela-
tion between the fluid and the solid mesh.
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