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Abstract

This short paper investigates sufficient conditions for the well-posedness for the dis-
crete version of a regularized fictitious domain method using conforming finite ele-
ment methods. We show that if both the regularization parameter and the bulk mesh
size are proportional to the mesh size of the physical dmain, the discrete inf-sup condi-
tion holds, where the constant appearing the estimate is independent of all discretiza-
tion parameters.

Keywords: fictitious domain method, Dirac delta approximations, inf-sup condition,
regularization, finite element method, interface problems.

1 Introduction

Non-matching approaches, such as immersed boundary methods [14], cut finite el-
ement methods [5, 6], penalty methods [1], and fictitious domain methods [2], are
efficient numerical strategies for addressing engineering problems involving complex
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geometries. These methods utilize a simple computational mesh and allow the bound-
ary of the embedded physical domain to intersect with the mesh, making them partic-
ularly useful in shape optimization or free-boundary problems.

In this paper, we focus on the finite element approximation based on the fictitious
domain method with a Lagrange multiplier. The corresponding weak formulation (see
Section 2 for a formal definition) is formulated as a symmetric saddle-point problem
that involves a coupling term between functions defined on the background domain Ω
and the physical domain ω: ∫

Γ

θ(x)v(x) dsx,

where Γ represents the boundary of the physical domain, and θ and v are functions
defined on Γ and Ω, respectively. In a finite element setting, evaluating this integrand
at quadrature points requires careful consideration when θ and v are finite element
basis functions associated with Γ and Ω

One approach involves constructing a fixed quadrature scheme independent of the
background mesh. While straightforward to implement, this method introduces errors
for nonsmooth functions due to the restriction of v onto Γ. An alternative is to evaluate
θ and v at nonzero intersections between cells in the meshes of Γ and Ω. However, this
approach is computationally expensive, as it requires (i) computing the intersection
between cells in the meshes of Γ and Ω, (ii) constructing a quadrature scheme on
these intersections, and (iii) computing the inverse mapping from reference cells to
the intersection regions.

To address these challenges, we propose an alternative approach that introduces the
Dirac delta function δ and rewrites the coupling integral in terms of the background
domain. Then we replace δ with its approximation δε with ε denoting the approxima-
tion parameter. Thus we shall instead compute the following double integral∫

Ω

∫
Γ

θ(x)δε(x− y)v(y) dy dsx

and the computation will performed when the integration cells are at a distance smaller
than ε. We also note that no special implementation is needed since θ and v are
evaluated on this own subdivisions.

Using the finite element method, establishing the inf-sup condition is essential to
ensure the well-posedness of the discrete formulation. Letting H and h denote the
mesh sizes of Γ and the background domain Ω, respectively, it is critical to demon-
strate that the constant in the inf-sup condition remains independent of H and h. Pre-
vious work by Bramble [3] showed that the discrete inf-sup condition holds under the
constraint h ≤ CH , where C is a sufficiently small constant. In two dimensions, Gi-
rault and Glowinski [11] demonstrated that C = 1/3 is valid for uniform background
meshes. Dahmen and Kunoth [7] provided an abstract framework linking the constant
in the inf-sup condition to the constants in the Trace theorem, norm equivalences for
H1/2(Γ) and H−1/2(Γ), space approximation estimates in Ω, and inverse inequalities
for Γ.
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In this paper, we investigate the well-posedness of the finite element approximation
of the fictitious domain method when the coupling terms are approximated using the
Dirac delta function. We demonstrate that under an additional condition, ε ≤ CH for
some positive constant C, the discrete inf-sup condition holds.

The remainder of the paper is organized as follows: Section 2 introduces the vari-
ational formulation of the fictitious domain method and its finite element approxima-
tion. Essential analysis tools are also presented in this section. In Section 3, we review
the discrete inf-sup condition and provide a stability analysis. Finally, Section 4 intro-
duces a regularized version of the coupling term and establishes its discrete stability.

Notations

In what follows, we denoteHr(Ω) with r ∈ [0, 2] the standard Sobolev spaces. H1
0 (Ω)

denotes the set of functions in H1(Ω) with vanishing boundary. H−r(Ω) is the dual
of Hr(Ω) ∩ H1

0 (Ω), while H−r(Γ) denotes the dual of Hr(Γ) for r ∈ [0, 1]. All the
duel spaces are equipped with the standard induced norms. We also set Hr±(Ω) :=
Hr±ε(Ω) for any small positive ε.

2 Preliminaries

Let Ω be a bounded background domain with Lipschitz boundary and ω is the physical
domain inside Ω. We set Γ = ∂ω. We also assume that Γ is Lipschitz and it is away
from the boundary of Ω, namely, there exists a positive constant c0 satisfying

dist(Γ, ∂Ω) > c0. (1)

Fictitious domain method

Let f̃ ∈ L2(ω), and g ∈ H1/2(Γ), we consider the Poisson equation

−∆u = f̃ , in ω,
u = −g, on Γ.

Let f ∈ L2(Ω) be an bounded extension of f̃ ∈ L2(ω). Then, we shall consider the
following variational formulation: given f ∈ L2(Ω) and g ∈ H1/2(Γ), we want to find
(u, λ) ∈ H1

0 (Ω)×H−1/2(Γ) satisfying

(∇u,∇v) + ⟨λ, tr v⟩ = (f, v), for all v ∈ H1
0 (Ω),

⟨θ, tru⟩ = ⟨θ, g⟩, for all θ ∈ H−1/2(Γ).
(2)

Here (·, ·) denotes the L2(Ω) inner product; ⟨·, ·⟩ denotes the duality pairing between
H−1/2(Γ) and H1/2(Γ); and tr is the trace operator onto Γ. It is well known that
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inf{∥v∥H1(Ω) : tr v = w} is an equivalent norm on ∥w∥H1/2(Γ) and hence there holds
the inf-sup condition

inf
θ∈H−1/2(Γ)

sup
v∈H1

0 (Ω)

⟨θ, tr v⟩
∥θ∥H−1/2(Γ)∥v∥H1(Ω)

≥ b.

The above inf-sup condition together with the coercivity of the Dirichlet form implies
that problem (2) is well-posed (cf. [4]).

The trace operator

We shall use the following Trace Theorem for our analysis: given v ∈ Hs(ω) with
s ∈ (1

2
, 3
2
), we have

∥ tr v∥Hs−1/2(Γ) ≤ CT∥v∥Hs(ω) ≤ CT∥v∥Hs(Ω). (3)

See e.g. [10] for a complete proof. It is also known that there exists an right inverse of
the trace operator E such that trEθ = θ for all θ ∈ Hs−1/2(Γ) and

∥Eθ∥Hs(ω) ≤ CIT∥θ∥Hs−1/2(Γ). (4)

We can continue to extendEθ to Ω using the Whitney extensionEW satisfyingEWv|ω =
v for all v ∈ Hs(ω) and ∥EWv∥Ω ≤ CW∥v∥Hs(Ω). Setting the extension operator
E = EWE, we obtain that for all θ ∈ Hs−1/2(Γ),

∥Eθ∥Hs(Ω) ≤ CITW∥θ∥Hs−1/2(Γ), (5)

where CITW = CITCW .

Elliptic Regularity

Our estimates rely on standard regularity results for elliptic problems: given g ∈
H−1(Ω), let T : H−1(Ω) → H1

0 (Ω) be the solution operator satisfying

(∇Tg,∇v) = ⟨g, v⟩H−1(Ω),H1
0 (Ω), for all v ∈ H1

0 (Ω). (6)

We first note that if g ∈ L2(Ω), we identify ⟨g, ·⟩H−1(Ω),H1
0 (Ω) with (g, ·)Ω. The follow-

ing assumption provides the regularity of Tg up to the boundary.

Assumption 1 (elliptic regularity). There exists r ∈ (1
2
, 1] and a positive constant

Creg satisfying
∥Tg∥H1+r(Ω) ≤ Creg∥g∥H−1+r(Ω).

As an example, consider the case where Ω is a polytope. Based the regularity
results provided by [8], r in Assumption 1 is between 1

2
and 1 and can be determined

by the shape of Ω.
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A discrete system

Now we assume that both Ω and Γ are polygonal. Let Th(Ω) and TH(Γ) be quasi-
uniform subdivisions of Ω and Γ, where h and H denotes the corresponding mesh
sizes. Let Vh be the continuous piecewise linear finite element space subordinate
to Th(Ω) and let WH be the piecewise constant finite element space subordinate to
TH(Γ). The discrete system reads: find (uh, λH) ∈ Vh ×WH such that

(∇uh,∇vh) + ⟨λH , tr vh⟩ = (f, vh), for all vh ∈ Vh,

⟨θH , uh⟩ = ⟨θH , g⟩, for all θH ∈ WH .
(7)

Some estimates in discrete spaces

Define the elliptic projection Rh : H1
0 (Ω) → Vh with

(∇Rhv,∇wh) = (∇v,∇wh), for all wh ∈ Vh.

The following approximation property will be used in our stability analysis: given
vh ∈ Vh ⊂ H3/2−(Ω), there holds that

∥(I −Rh)vh∥H1(Ω) ≤ Capph
1/2−∥vh∥H3/2− (Ω). (8)

We shall also use the following inverse inequality for WH : given θH ∈ WH , we have

∥θH∥L2(Γ) ≤ CinvH
−1/2∥θH∥H−1/2(Γ). (9)

3 Discrete inf-sup condition for (7)

In order to prove the well-posedness of the discrete problem (7), we need to show the
following inf-sup condition: there exists a positive constant β independent of h and H
so that

inf
θH∈WH

sup
vh∈Vh

⟨θH , tr vh⟩
∥θH∥H−1/2(Γ)∥vh∥H1(Ω)

≥ β. (10)

In the following lemma, we provide a complete proof of (10) in the spirit of [3] (see
also [7] a more general proof) and our proof for the regularized version will follow
this argument. We also show how the above constant β depends on the constants
mentioned in Section 2.

Lemma 2 (discrete inf-sup condition). Let H , the mesh size of TH(Γ), be fixed. As-
sume that h, the mesh size of Th(Ω), small enough so that

CappCregCITWCTCinvh
1/2−H−1/2 = 1

2
.

Then the inf-sup condition (10) holds with β = 1
2CITW

.
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Proof. For a fixed θH ∈ WH , we set TθH ∈ H1
0 (Ω) to be the solution of the Laplace

problem, i.e.

(∇TθH ,∇v) = ⟨FθH , v⟩H−1(Ω),H1
0 (Ω) := ⟨θH , tr v⟩, for all v ∈ H1

0 (Ω),

We note that FθH ∈ H−1/2−(Ω) in view of (3):

∥FθH∥H−1/2− (Ω) = sup
v∈H1/2+ (Ω)

⟨θH , tr v⟩
∥v∥H1/2+ (Ω)

≤
∥θH∥L2(Γ)∥ tr v∥L2(Γ)

∥v∥H1/2+ (Ω)

≤ CT∥θH∥L2(Γ).

(11)

Hence by elliptic regularity, TθH ∈ H3/2−(Ω). Let v = RhTθH to get

⟨θH , trRhTθH⟩ = (∇TθH ,∇RhTθH)

= (∇RhTθH ,∇RhTθH) = ∥RhTθH∥2H1(Ω).

On the other hand, thanks to (5), there holds that

∥θH∥H−1/2(Γ) = sup
w∈H1/2(Γ)

⟨θH , w⟩
∥w∥H1/2(Γ)

= sup
w∈H1/2(Γ)

(∇TθH ,∇Ew)
∥w∥H1/2(Γ)

≤ sup
w∈H1/2(Ω)

∥TθH∥H1(Ω)∥Ew∥H1(Ω)

∥w∥H1/2(Γ)

≤ CITW∥TθH∥H1(Ω).

(12)

Next we want to bound TθH . The approximation property of the elliptic projection
(8) together with Assumption 1 and (11) implies that

∥TθH∥H1(Ω) ≤ ∥(I −Rh)TθH∥H1(Ω) + ∥RhTθH∥H1(Ω)

≤ Capph
1/2−∥TθH∥H3/2− (Ω) + ∥RhTθH∥H1(Ω)

≤ CappCregh
1/2−∥FθH∥H−1/2− (Ω) + ∥RhTθH∥H1(Ω)

≤ CappCregCTh
1/2−∥θH∥L2(Γ) + ∥RhTθH∥H1(Ω)

≤ CappCregCTCinvh
1/2−H−1/2∥θH∥H−1/2(Γ) + ∥RhTθH∥H1(Ω),

where for the last inequality we used the inverse equality (9) for WH . Combing the
above estimate and (12) to obtain that

∥θH∥H−1/2(Γ) ≤ CappCregCITWCTCinvh
1/2−H−1/2∥θH∥H−1/2(Γ)

+ CITW∥RhTθH∥H1(Ω).

Now we let h small enough so that CappCregCITWCTCinvh
1/2−H−1/2 = 1

2
. This

implies that
∥θH∥H−1/2(Γ) ≤ 2CITW∥RhTθH∥H1(Ω).

Combing all the results, we conclude that for all θH ∈ WH ,

⟨θH , trRhTθH⟩ ≥
1

2CITW

∥RhTθH∥H1(Ω)∥θH∥H−1/2(Γ).

The proof is complete.
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4 A variational formulation with regularization

In this section, we consider a new variational formulation by regularizing the function
defined on Γ using a class of approximations of the Dirac distributions.

Regularization

Let ψ1d be a function in C1(R) such that ϕ1d is compactly supported in (−1, 1). Let
ψ(x) = cψ(|x|) for some constant c so that

∫
Rd ψ dx = 1. Then we set

δε(x) =
1

εd
ψ

(
x

ε

)
. (13)

For a function v ∈ L1(Ω), we define its regularization by

vε(x) :=

∫
Ω

δε(x− y)v(y) dy, for x ∈ Ω. (14)

For a functional F ∈ Hs−1(ω) ∩H−1(Ω) with s ∈ [0, 1]. We define its regularization
F ε satisfying

⟨F ε, v⟩H−1(Ω),H1(Ω) = ⟨F, vε⟩H−1(Ω),H1(Ω), for all v ∈ H1(Ω). (15)

In particular, given θH ∈ WH , we can define the functional FθH by

F ε
θH

=

∫
Γ

θH(y)δ
ε(x− y) dy =: θεH ,

noting that here we used the fact that δε is radially symmetric.

Remark 3. We note that one can also generate the Dirac delta approximation by the
tensor product of ψ1d and choose ψ1d suitably with certain moment condition and
smoothness condition. For more choices we refer to [12, 13].

A regularized discrete formulation

The regularized discrete formulation reads: find (Uh,ΛH) ∈ Vh ×WH satisfying

(∇Uh,∇vh) + (Λε
H , vh) = (f, vh), for all vh ∈ Vh,

(θεH , Uh) = ⟨θH , g⟩, for all θH ∈ WH .
(16)

Stability

Following the argument of Lemma 2, we are ready to show the inf-sup condition for
the above discrete system. Next we show that the above discrete system is well-posed.
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Theorem 4. (discrete inf-sup condition for (16)) Let H be fixed. There exist two
positive constants C1 and C2 such that when ε ≤ C1H and h ≤ C2H , there holds

inf
θH∈WH

sup
vh∈Vh

(θεH , vh)

∥θH∥H−1/2(Γ)∥vh∥H1(Ω)

≥ β̃, (17)

where β̃ is a positive constant independent of ε, h and H .

Proof. We first try to bound θH in H1/2−(Γ) norm by TθεH . According to Theorem 3
of [12] there holds

∥FθH − F ε
θH
∥H−1(Ω) ≤ Crε

1/2∥FθH∥H−1/2− (ω).

Following (11), we can also show that ∥FθH∥H−1/2− (ω) ≤ CT∥θH∥L2(Γ). Thus,

∥TθH∥H1(Ω) ≤ ∥TθH − TθεH∥H1(Ω) + ∥TθεH∥H1(Ω)

≤ ∥FθH − F ε
θH
∥H−1(Ω) + ∥TθεH∥H1(Ω)

≤ CrCT ε
1/2∥θH∥L2(Γ) + ∥TθεH∥H1(Ω)

≤ CrCTCinvε
1/2H−1/2∥θH∥H−1/2(Γ) + ∥TθεH∥H1(Ω).

Combing the above estimate with (12) in Lemma 2 and set

CrCITWCTCinvε
1/2H−1/2 = 1

2

to obtain that
∥θH∥H−1/2(Γ) ≤ 2CITW∥TθεH∥H1(Ω). (18)

On the other hand, according to the definition of the regulation of the a linear func-
tional acting on H−1/2(Ω) and the trace inequality, there holds that

∥θεH∥H−1/2−(Ω) = sup
w∈H1/2+ (Ω)

(θεH , w)

∥w∥H1/2+ (Ω)

= sup
w∈H1/2+ (Ω)

⟨θH , wε⟩
∥w∥H1/2+ (Ω)

≤ sup
w∈H1/2+ (Ω)

∥θH∥L2(Γ)∥wε∥L2(Γ)

∥w∥H1/2+ (Ω)

≤ CT sup
w∈H1/2+ (Ω)

∥θH∥L2(Γ)∥wε∥H1/2+ (ω)

∥w∥H1/2+ (Ω)

≤ CTCrs∥θH∥L2(Γ).

Here for the last inequality above, we again used Theorem 3 of [12]:

∥w − wε∥H1/2+ (ω) ≤ Cr∥w∥H1/2+ (Ω)

so that
∥wε∥H1/2+ (ω) ≤ Crs∥w∥H1/2+ (Ω)

with Crs = 1 + Cr.
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Utilizing the above estimate together with (18), we continue to bound TθεH by

∥TθεH∥H1(Ω) ≤ ∥(I −Rh)θ
ε
H∥H1(Ω) + ∥RhTθ

ε
H∥H1(Ω)

≤ Capph
1/2−∥TθεH∥H3/2− (Ω)) + ∥RhTθ

ε
H∥H1(Ω)

≤ CappCregh
1/2−∥θεH∥H−1/2− (Ω) + ∥RhTθ

ε
H∥H1(Ω)

≤ CappCregCTCrsh
1/2−∥θH∥L2(Γ) + ∥RhTθ

ε
H∥H1(Ω)

≤ CappCregCTCrsCinvh
1/2−H−1/2∥θH∥H−1/2(Γ) + ∥RhTθ

ε
H∥H1(Ω).

Now we set
2CappCregCTCrsCITWCinvh

1/2−H−1/2 = 1
2

to get
∥θH∥H−1/2(Γ) ≤ 4CITW∥RhTθ

ε
H∥H1(Ω).

We end this proof by setting vh = RhTθ
ε
H in (17) so that

(θεH , vh)

∥θH∥H−1/2(Γ)∥vh∥H1(Ω)

=
∥RhTθ

ε
H∥2H1(Ω)

∥θH∥H−1/2(Γ)∥RhTθεH∥H1(Ω)

≥ 1

4CT

.
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