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Abstract

An approximate analytical technique is developed for assessing the capsizing risk of
ships rolling in beam seas subjected to non-white sea-wave excitations. The ship mo-
tion is modeled as a nonlinear roll system incorporating both softening and hardening
restoring characteristics, nonlinear damping, and evolutionary stochastic excitation
representative of ocean conditions. A stochastic averaging method is employed to de-
rive time-dependent seakeeping probabilities in a computationally efficient manner.
The method accounts for both bounded and unbounded ship roll motion associated
with negative stiffness regions by introducing a tailored form of the non-stationary re-
sponse amplitude probability density function (PDF), specifically designed to capture
this critical ship dynamics behavior. A notable strength of the approach is its abil-
ity to handle stochastic excitations with time-varying intensity and frequency content,
as commonly encountered in open-sea environments. Numerical examples involving
nonlinear ship roll models are presented whereas comparisons with pertinent Monte
Carlo simulation data demonstrate the efficiency and accuracy of the proposed tech-
nique.

Keywords: nonlinear ship rolling, statistical linearization, capsizing failure, stochas-
tic averaging, seakeeping reliability, sea-wave evolutionary power spectrum
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1 Introduction

Stability has always been a central concern in naval architecture, traditionally ad-
dressed through static criteria to ensure safe vessel operation. However, static anal-
yses alone are insufficient to capture the complex dynamic behaviors encountered in
real-world maritime environments, particularly under the influence of large-amplitude
sea waves. In response to increased operational demands and safety standards, recent
research has shifted toward dynamic stability assessments, with particular focus on
the mechanisms of ship capsizing and excessive roll motions in beam seas. As sea-
keeping performance plays a critical role in determining operational limits, there is a
growing need for tools that not only describe ship motion in adverse open sea condi-
tions but also quantify the associated risks. Motivated by the need to quantify safety
margins under such conditions, this work adopts a reliability-based perspective to as-
sess the risk of dynamic instability in nonlinear ship rolling. The ship dynamics are
modeled with respect to realistic nonlinear restoring and nonlinear damping character-
istics whereas the influence of stochastic, non-white sea-wave excitations is explicitly
considered. To ensure physical relevance and compatibility with current standards,
the wave excitation is modeled using a JONSWAP-type sea spectrum, widely used in
modern offshore and maritime design codes (e.g., [1, 2]).
Despite advances in design practices and safety regulations, incidents of ship capsiz-
ing continue to result in significant losses of vessels, cargo, and human life. These
extreme events are often driven by rare but critical dynamic responses that exceed
stability thresholds, making them well-suited to analysis through the lens of the first-
passage problem (e.g., [3, 4]). In this regard, the likelihood of capsize is defined as
the probability that the ship roll response exceeds a critical threshold for the first time
under evolutionary stochastic excitation, assuming no prior exceedance has been oc-
curred. This formulation provides a meaningful and quantifiable measure of the ves-
sel seakeeping reliability. To assess the probability of such critical events, advanced
Monte Carlo simulation (MCS) techniques have been widely applied in reliability
analysis (e.g., [5]). However, in the context of complex nonlinear models (e.g., [6–8])
subjected to evolutionary stochastic excitation, MCS can become computationally
burdensome, particularly when estimating higher-order statistical quantities such as
response probability density functions (PDFs). This challenge motivates the devel-
opment of efficient approximate analytical methods (e.g., [9]), frameworks related
to modeling the response as an one-dimensional Markov process (e.g., [10]), prob-
ability density evolution schemes (e.g., [11]), and stochastic averaging/linearization
techniques (e.g., [12–14]).
The nonlinear nature of ship rolling introduces substantial modeling challenges, par-
ticularly when attempting to capture the physics of large-amplitude motions and po-
tential capsizing events. Although often phenomenological, nonlinear roll models
employing odd-order polynomial representations of the restoring moment have proven
effective in characterizing the essential dynamics of ship behavior under beam wave
excitations (e.g., [15]). These formulations reflect key physical phenomena such as
restoring asymmetry, softening and hardening effects, and loss of stiffness at high roll
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angles. In the present work, the nonlinear stiffness is represented using polynomial
expressions up to fifth order, offering a balance between physical realism and ana-
lytical tractability while coupled with evolutionary stochastic wave excitation models
dictated by modern maritime design codes. Additionally, nonlinear damping effects
play a critical role in limiting large roll amplitudes and capturing energy dissipation
mechanisms, and are incorporated to enhance the fidelity of the modeling. Lastly,
the method rigorously captures both bounded and unbounded dynamic rolling by in-
troducing a tailored form of the non-stationary response amplitude PDF, explicitly
designated to reflect the critical features of nonlinear ship roll dynamics.

2 Mathematical Formulation

This section outlines the mathematical foundations underlying the proposed efficient
stochastic dynamics vessel seakeeping reliability methodology. Emphasis is placed on
the modelling assumptions and simplifications introduced to facilitate numerical effi-
ciency, while maintaining consistency with the adopted complex nonlinear governing
equation for ship rolling motion.

2.1 Sea-wave evolutionary excitation spectrum

The induced sea-wave excitation is modeled as a zero-mean Gaussian non-stationary
stochastic process characterized by an evolutionary power spectrum (EPS). This mod-
eling approach captures the time-varying distribution of energy in the roll-moment
excitation spectrum and is defined as

Sw(ω, t) = |g(t)|2|Froll(ω)|2SJS(ω) (1)

where SJS(ω) denotes the stationary JONSWAP wave-energy spectrum, Froll(ω) is a
frequency-dependent transfer function that maps wave energy into roll-moment exci-
tation, and g(t) is a time envelope function that introduces non-stationarity into the
process. Particular attention is given to the JONSWAP model [16], which follow-
ing the IEC 61400-3 guidelines [2], produces a narrow-banded spectrum with a pro-
nounced peak at the dominant wave frequency. The inclusion of the function Froll(ω),
however, has been shown to broaden the band of the excitation spectrum. Subse-
quently, the adopted JONSWAP spectrum takes the form

SJS(ω) = 0.3125TpH
2
s

(
ω

ωp

)−5

exp

[
−1.25

(
ω

ωp

)−4
]
M(ω) (2)

where ωp = 2π/Tp is the peak frequency, and the termM(ω) defines the spectral peak
enhancement

M(ω) = (1− 0.287 log γ)γ
exp

[
− 1

2

(
ω/ωp−1

σ

)2
]

(3)
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Figure 1: Evolutionary roll-moment excitation spectrum Sw(ω, t)

In line with IEC 61400-3 (e.g., [2, 17]) and established practice, the peak-shape pa-
rameter is set to γ=3.3, with σ = 0.07 for frequencies below the peak frequency ωp

and σ = 0.09 otherwise. The peak period Tp and significant wave height Hs are deter-
mined from representative measurements for demonstration purposes in the numerical
application part. The function Froll, is defined as |Froll|2 = Cω4 with C = 3 reflecting
beam-sea loading conditions and system properties. To model non-stationarity, the
time envelope function g(t) is adopted in the form

g(t) =

{
0.2 + 0.8×

[
t

a
exp

(
1− t

a

)]b}0.5

(4)

where the shaping parameters are chosen as α = 20 and b = 5 governing the growth
and decay characteristics of the envelope function. The resulting EPS is shown in
Fig. 1, where the prominent narrow-band peak of the JONSWAP spectrum is evident.
The broadening of the high-frequency tail arises due to the presence of the function
Froll which works towards injecting additional energy into the higher-frequency range
of the excitation profile.

2.2 Governing nonlinear ship rolling motion equation

The ship rolling under stochastic sea-wave excitation is governed by a second-order
differential equation featuring linear and nonlinear damping terms, along with a non-
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linear restoring moment. While the restoring moment is commonly approximated
using odd-order polynomials, damping formulations vary widely across the literature
(e.g. [12, 15, 18]). In the herein study, we adopt a formulation proposed by Taylan,
in which the roll motion is modeled using a quintic polynomial representation for the
righting arm (GZ) curve, combined with a B1-type damping scheme as appear in [15].
The governing dynamics nonlinear ship rolling equation is expressed as

(Ixx+δIxx)ϕ̈(t)+BLϕ̇(t)+BN ϕ̇(t)|ϕ̇(t)|+∆(C1ϕ(t)+C2ϕ
3(t)+C3ϕ

5(t)) = Sw(ω, t)
(5)

Here, ϕ(t) is the roll angle, Ixx is the ship roll moment of inertia, and BL and BN

are the linear and nonlinear damping coefficients, respectively. Note that the squared
velocity term is expressed as ϕ̇(t)|ϕ̇(t)|, ensuring that the damping force always op-
poses the motion. This formulation guarantees that, regardless of the sign of ϕ̇(t),
the damping moment remains directed opposite to the roll velocity, thereby accurately
modeling energy dissipation due to nonlinear hydrodynamic effects. The coefficients
C1, C3, C5 correspond to the linear, cubic, and quintic terms of the restoring moment,
derived from the ship GZ curve. These are defined as

C1 =
d(GZ)

dϕ
= GM (6)

C3 =
4

ϕ4
v

(3Aϕv −GMϕ2
v) (7)

C5 = − 3

ϕ6
v

(4Aϕv −GMϕ2
v) (8)

In these expressions, GM denotes the metacentric height, ϕv is the vanishing stability
angle, and Aϕv is the area under the GZ curve. By dividing through Ixx + δIxx and
substituting the C1, C3, C5, Eq.(5) is reformulated to emphasize the role of nonlinear
contributions in the ensuing reliability analysis. The nonlinear components are each
scaled by distinct weighting factors ε1, ε2, and ε3, yielding the final form

ϕ̈(t) + bLϕ̇(t) + ε1bN ϕ̇(t)|ϕ̇(t)|+ ω2
ϕϕ(t) + ε2m3ϕ

3(t) + ε3m5ϕ
5(t) = Sw(ω, t) (9)

where the normalized coefficients are given by

ω2
ϕ =

∆GM

Ixx + δIxx
(10)

m3 =
4ω2

ϕ

ϕ2
v

(
3Aϕv

GMϕ2
v

− 1) (11)

m5 = −
3ω2

ϕ

ϕ4
v

(
4Aϕv

GMϕ2
v

− 1) (12)

bL =
BL

Ixx + δIxx
(13)
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bN =
BN

Ixx + δIxx
(14)

The weighting factors introduce modeling flexibility by enabling the representation of
physically meaningful damping and restoring behaviors. They enhance adaptability,
allowing the model to capture a wide range of ship-specific dynamic responses and
design requirements.

2.3 Capsizing seakeeping reliability assessment

Having defined both the excitation stochastic process and the nonlinear roll motion
equation, this subsection focuses on evaluating the ship capsizing probability; see
also [3, 19]. The approach relies on a stochastic averaging treatment applied to the
system dynamics, reducing the original nonlinear second-order differential equation
to a first-order stochastic differential equation (SDE) governing the evolution of the
roll angle amplitude. Assuming the system of Eq. (9) is lightly damped and excited
by Eq. (1), it is expected to exhibit a pseudo-harmonic behavior under non-capsizing
conditions, characterized by a slowly varying with time roll amplitude A(t) and a
slowly varying with time phase ϕ(t). Therefore, the roll angle satisfies

ϕ(t) = A(t) cos(ψ), ϕ̇(t) = −ω(A)A(t) sin(ψ) (15)

with ψ defined as:
ψ = ω(A)t+ θ(t) (16)

Here, A(t) and θ(t) denote slowly time-varying functions, treated as constants over a
single oscillation cycle. This enables the use of equivalent linearization (e.g., [20]),
transforming Eq. (9) into

ϕ̈(t) + β(A)ϕ̇(t) + ω2(A)ϕ(t) = Sw(ω, t) (17)

The equivalent amplitude-dependent damping β(A) and stiffness elements ω(A) are
defined as

β(A) = bL +
S(A)

Aω(A)
, ω2(A) =

C(A)

A
(18)

with

C(A) =
1

π

∫ 2π

0

cosψ
(
− ε1bNω(A)A sinψ · |− ω(A)A sinψ|

+ ω2
ϕA cosψ + ε2m3(A cosψ)3 + ε3m5(A cosψ)5

)
dψ (19)

and

S(A) = − 1

π

∫ 2π

0

sinψ
(
− ε1bNω(A)A sinψ · |− ω(A)A sinψ|

+ ω2
ϕA cosψ + ε2m3(A cosψ)3 + ε3m5(A cosψ)5

)
dψ (20)
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Assuming the roll angle amplitude A(t) follows a truncated Rayleigh distribution of
the form

p(A, t) =
A

c(t)
exp

(
− A2

2c(t)

)
rect(A) + exp

(
− A2

cr

2c(t)

)
δ(A− A∞) (21)

where rect(A) = u(A) − u(A − Acr), with u(·) denoting the unit step function, c(t)
is a coefficient to be determined, and δ(·) is the Dirac delta function. Considering the
amplitude-dependent elements in Eq. (17) are approximated by corresponding time-
varying elements forms

ϕ̈(t) + βeq(t)ϕ̇(t) + ω2
eq(t)ϕ(t) = Sw(ω, t) (22)

where the time-varying equivalent elements are

βeq(t) = bL +

∫ ∞

0

S(A)

Aω(A)
p(A, t) dA (23)

and
ω2

eq(t) =

∫ ∞

0

ω2(A)p(A, t) dA (24)

Based on the nature of the roll angle amplitude PDF p(A, t), the time-dependent el-
ements comprise two parts; the bounded part, for A ∈ [0, Acr], and the unbounded
part for A ∈ (acr,∞), which may lead to capsizing. In this context, the bounded
equivalent stiffness ω2

eq,B(t) element is given by

ω2
eq,B(t) =

∫ Acr

0

ω2(A)p(A, t)dt, (25)

while the corresponding bounded equivalent damping βeq,B(t) element reads

βeq,B(t) =

∫ Acr

0

β(A)p(A, t)dt. (26)

To evaluate ship capsizing reliability, the critical roll angle amplitude Acr is needed;
this is defined as ω2

eq(Acr) = 0. Notably, capsizing is noted when the roll amplitude A
exceeds this critical threshold Acr, leading to negative values of stiffness assisting the
capsizing. In this setting, Eq.(23) and Eq.(24) yield:

βeq,B(t) = bL +

∫ Acr

0

8

3π
ε1bNA

(
ω2
ϕ +

3

4
ε2A

2m3 +
5

8
ε3A

4m5

)1/2

p(A, t) dA (27)

and

ω2
eq,B(t) = ω2

ϕ +
3

2
ε2c(t)m3 + 5ε3c

2(t)m5

− A2
cr (5ε3m5A

2
cr + 6ε2m3 + 20ε3c(t)m5)

8 (S(t)− 1)
(28)
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where the time dependent factor S(t) is determined by applying the normalisation
condition

∫∞
0
p(A, t) = 1, and yields S(t) = exp[−A2

cr/(2c(t))]. A combination of
deterministic and stochastic averaging yields a first-order SDE governing the evolution
of the roll angle amplitude

Ȧ(t) = −1

2
βeq,B(t)A(t) +

πSw(ωeq,B(t), t)

2A(t)ω2
eq,B(t)

+
[πSw(ωeq,B(t), t)]

1/2

ωeq.B(t)
η(t) (29)

where η(t) is a zero-mean and delta-correlated process of unit intensity, withE(η(t)) =
0; and E(η(t)η(t+ τ)) = δ(t) (e.g., [19, 21, 22]). Eq.(29) signifies that the amplitude
process A(t) is decoupled from the phase ϕ(t) and, thus, can be modeled as a one-
dimensional Markov process, enabling the formulation of a Fokker-Planck equation
that governs the associated response amplitude PDF

∂p(A, t)

∂t
= − ∂

∂A

{(
−1

2
βeq,B(t)A+

πSw(ωeq,B(t), t)

2Aω2
eq,B(t)

)
p(A, t)

}

+
πSw(ωeq,B(t), t)

2ω2
eq,B(t)

∂2p(A, t)

∂A2
. (30)

Substituting the truncated Rayleigh PDF of Eq. (21) into Eq. (30), the following non-
linear differential equation can be obtained for the computation of the time-varying
c(t)

ċ(t) = −βeq,B(t) c(t) +
π Sw(ωeq,B(t), t)

ω2
eq,B(t)

(31)

An adaptive discretization scheme is employed by dividing time into intervals of the
form (e.g., [3, 12])

[ti−1, ti], i = 1, 2, . . . ,M, t0 = 0, tM = T, and
ti = ti−1 + dTTeq(ti−1) (32)

where Teq is the equivalent natural period of the ship rolling system Teq(t) = 2π
ωeq(t)

The survival probability PB(t) is computed via

PB(T = tM) =
M∏
i=1

(1− Fi) (33)

with Fi defined as the capsizing failure probability of the first-passage kind, meaning
that the roll angle amplitude will cross the critical amplitude Acr in the time interval
[ti−1, ti] given that no crossing has occurred prior to time ti−1

Fi =
Prob[a(ti) ≥ acr ∩ a(ti−1) < acr]

Prob[a(ti−1) < acr]
=
Qi−1,i

Hi−1

, (34)

where

Hi−1 =

∫ Acr

0

p(Ai−1, ti−1)dAi−1 (35)
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and

Qi−1,i = Hi−1 −
∫ Acr

0

∫ Acr

0

ptr(Ai, ti|Ai−1, ti−1)p(Ai−1, ti−1)dAidAi−1 (36)

In Eq. (36), ptr stands for the transition amplitude PDF, provided in the form

ptr(Ai−1, ti−1 | Ai, ti) =
Ai

c(ti−1, ti)
exp

[
−A

2
i + h2(ti−1, ti)

2c(ti−1, ti)

]
I0

(
Aih(ti−1, ti)

c(ti−1, ti)

)
rect(A)

(37)

where I0(.) denotes the modified Bessel function of the first kind and zero order. The
time-varying coefficients h(ti−1, ti) and c(ti−1, ti) [23] are given as

h(ti−1, ti) = Ai−1

√
1− βeq,B(ti−1)τi (38)

and

c(ti−1, ti) =
πSW [ωeq,B(ti−1), ti−1]

ω2
eq,B(ti−1)

τi (39)

where τi = ti−ti−1. This framework forms the basis for evaluating the time-dependent
seakeeping reliability of a ship rolling under evolutionary sea-wave excitation pro-
cesses, characterized by time-varying intensity and frequency content, as commonly
encountered in open-sea environments.

3 Numerical results

This section presents the numerical results of the vessel seakeeping reliability assess-
ment method based on the mathematical framework established in Section 2. Varia-
tions in the input significant wave height Hs as well as in the system weighting factors
ε1, ε2, and ε3, are considered. The results are compared against pertinent MCS data
to validate the efficiency and reliability of the proposed approach. For all wave height
scenarios, the excitation is characterized by a peak period of Tp = 15.5 s. The ship
rolling parameters are ωϕ = 1.5 rad/s, ϕv = 0.96 rad, m3 = −2.4 s−2, m5 = 0.2 s−2,
bL = 0.042 s−1, and bN = 0.042 (e.g., [24, 25]). The primary nonlinear damping
weighting factor is held constant at ε1 = 0.1, while variations in ε2 and ε3 are in-
troduced with respect to the restoring force characteristics. To enhance the accuracy
of the analysis under stronger excitations that induce pronounced nonlinear behav-
ior—particularly when the equivalent natural period Teq(t) marches towards higher
values—an adaptive time discretization step of dT = 0.1 is prioritized. This preserves
the validity of the assumption that the survival probability remains approximately con-
stant over each time-interval (e.g., [3,12]). Fig. 2 presents the time-dependent capsiz-
ing survival probability for a ship subjected to significant wave heights of Hs = 6m
and Hs = 8m. The accuracy of the proposed methodology is assessed by juxtaposing
its results with those obtained from Monte Carlo simulations involving 5,000 realiza-
tions (e.g., [26, 27]).

9



Figure 2: Capsizing survival probability of a nonlinear ship rolling system (ε1 = 0.1)
under evolutionary sea-wave excitation for noninal wave heights Hs = 6m and

Hs = 8m; Comparisons with MCS data (5,000 realizations).

It can be noted that at any given time instant, the survival probability associated
with the lower wave height condition (Hs = 6m) is consistently higher than that
corresponding to the higher wave height (Hs = 8m). This observation aligns with
engineering intuition, as lower wave heights impart reduced excitation energy to the
system, thereby decreasing the likelihood of capsizing and improving the vessel sea-
keeping performance. The proposed methodology demonstrates a satisfactory degree
of agreement with the MCS benchmark across a range of values for the considered
weighting factors ε. Its consistent performance under varying wave heights further
underscores the robustness of the approach in accommodating different excitation
characteristics, rendering it well-suited for application across diverse and realistic sea
states. In the presented results, specific values of ε2 and ε3 in the righting arm GZ
curve were selected to ensure that the hardening effects associated with the fifth-order
term remain of lower magnitude compared to the softening effects of the third-order
term. This choice is further supported by the nature of the restoring coefficients m3

and m5, where m3 is considerably larger in magnitude than m5, reinforcing the domi-
nance of softening behavior. The condition of ε2 < ε3 enables a balanced yet flexible
representation of softening and hardening effects, fully consistent with ship roll mod-
eling practices found in the literature (e.g., [15]). Mild to soft hardening behavior
may also arise from small stabilizing fins mounted on the sides of large ships, which
act like airplane wings and introduce limited restoring effects at larger roll angles.
While this formulation facilitates a meaningful assessment of capsizing probability
within the proposed seakeeping reliability framework, careful tuning of the damping
and restoring weighting factors is essential to preserve physical realism and ensure the
model captures relevant nonlinear roll dynamics. With these considerations in place,
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the proposed method offers a computationally efficient and practically applicable tool,
particularly valuable in early-stage contexts aligned with performance-based analysis
strategies.

4 Concluding remarks

This study proposes a novel framework to assess the capsizing survival probability of
ships subjected to non-white stochastic sea-wave excitations in beam seas. The model
incorporates nonlinear damping and both softening and hardening restoring moment
characteristics, capturing essential dynamic behaviors of ship rolling under realistic
ocean conditions. A key feature of the method lies in its ability to handle evolutionary
stochastic excitation with varying intensity and frequency content, thus reflecting the
nature of irregular sea states. The approach also addresses the challenge of unbounded
roll responses by introducing a tailored non-stationary probability density function for
the roll angle amplitude. The framework demonstrates significant computational ef-
ficiency and provides accurate estimates of seakeeping reliability when compared to
benchmark Monte Carlo simulation results. By advancing the theoretical modeling
of nonlinear ship rolling dynamics, this study contributes a practical and scalable tool
for performance-based seakeeping analysis, especially in early-stage design or opera-
tional planning where full-scale simulations are often impractical.
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