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Abstract 
 

We present a reduced-order single-degree-of-freedom (SDOF) formulation that 

couples non-linear material behaviour with rate-dependent steel properties and 

explicit uncertainty propagation for steel plates subjected to blast over-pressure. The 

model is calibrated against experimental data and finite-element simulations, 

achieving < 5 % error on peak displacement while cutting computational time by four 

orders of magnitude. A Monte-Carlo framework (15,000 realizations) treats TNT 

mass as a log-normal variable and delivers fragility curves for slight, moderate and 

severe damage states. Results show that, for a 3 mm plate, the β-parameter of the fitted 

sigmoid increases from 5.1 to 8.4 when explosive mass rises from 50 kg to 200 kg, 

indicating steeper reliability gradients. The proposed approach enables rapid 

performance-based assessment and is readily extendable to other impulsive loads or 

parameterized digital-twin environments.  
 

Keywords: single-degree-of-freedom, stochastics, uncertain loading, Monte Carlo 

simulations, fragility curves, blast loading, steel plates. 
 

1  Introduction 
 

Structural elements, how plates, are exposed to blast loads, forces that rise and fall in 

milliseconds and vary across the surface. The peak pressure, duration and impulse are 

usually known only within wide uncertainty ranges. In settings such as industrial 

plants or dense city centers, safe design therefore needs two ingredients: a mechanical 

model that captures the plate’s non-linear behavior to extreme loading, and a 

 

 

PLEASE LEAVE THIS BOX IN PLACE 

AND DO NOT TYPE ANYTHING 

WITHIN THE BOX 

 

Stochastic Nonlinear SDOF Model and 

Probabilistic Fragility Assessment of Steel Plates 

Under Blast Loading 

 
F. Pinna and F. Stochino 

 
Department of Civil, Environmental Engineering and 

Architecture, University of Cagliari, 

Italy 

 

 

Proceedings of the Eighteenth International Conference on 
Civil, Structural and Environmental Engineering Computing  

Edited by: P. Iványi, J. Kruis and B.H.V. Topping  
Civil-Comp Conferences, Volume 10, Paper 7.4 

Civil-Comp Press, Edinburgh, United Kingdom, 2025 
ISSN: 2753-3239,  doi: 10.4203/ccc.10.7.4 

©Civil-Comp Ltd, Edinburgh, UK, 2025 



 

2 

 

probabilistic framework that carries all key uncertainties through to clear performance 

measures. 

Recent experimental campaigns on metallic panels [1–3] have considerably 

improved the physical understanding of blast–structure interaction; yet their direct use 

in routine design remains limited because full three-dimensional non-linear finite-

element (FE) analyses are computationally prohibitive when thousands of 

load/performance realizations are required. 

A popular compromise is to replace the full continuum description with a reduced-

order single-degree-of-freedom (SDOF) in which the plate is idealized as a lumped-

mass, bilinear oscillator calibrated to replicate the dominant deformation mode [4-6]. 

Classical SDOF schemes, however, are mostly deterministic and linear-elastic; they 

neglect strain-rate effects and cannot be deployed in a Monte-Carlo environment 

without ad-hoc empirical corrections. Moreover, published fragility studies on 

extreme-loaded element often rely on simplified pressure–impulse diagrams or on 

machine-learning surrogates trained for seismic rather than impulsive demands [7-

10]. Motivated by these gaps, the present work proposed a non-linear, strain-rate 

dependent SDOF formulation expressly devised for large-scale uncertainty 

propagation.  

The remainder of the paper is organized as follows. Section 2 details the theoretical 

derivation of the SDOF, including load and mass factors, strain-rate modelling and 

the explicit central-difference integration scheme. Section 2.1 benchmarks the model 

against experimental and FEM results from the literature. Section 3 develops the 

probabilistic framework and the resulting fragility curves. Concluding remarks and 

avenues for future research are given in Section 4. 

 

2  Methods 
 

As illustrated in Figure 1, the steel plate is represented by a single-degree-of-freedom, 

SDOF, model with a resistance 𝑅𝐸,𝑒𝑙/𝑝𝑙 = 𝛼𝑒𝑙/𝑝𝑙 ∙ 𝑀𝑅, lumped mass, 𝑀𝐸, and 

stiffness, 𝐾𝐸, are taken from [6] for clamped square plates and simple support plates. 

The governing equations are: 

𝑀𝐸,𝑒𝑙
𝑑2𝑈𝐸(𝑡)

𝑑𝑡2
+ 𝐾𝐸,𝑒𝑙 𝑈𝐸(𝑡) = 𝐹𝐸(𝑡)      for 0 ≤ 𝑈𝐸 ≤ 𝑈𝐸,𝑒𝑙 (1a) 

𝑀𝐸,𝑝𝑙
𝑑2𝑈𝐸(𝑡)

𝑑𝑡2
+ 𝐾𝐸,𝑝𝑙 𝑈𝐸(𝑡) = 𝐹𝐸(𝑡)      for 𝑈𝐸,𝑒𝑙 < 𝑈𝐸 ≤ 𝑈𝐸,𝑝𝑙 (1b) 

 

 

 

 

 

 

 

 
 

Figure 1: (a) Real plate; (b) SDOF model for the steel plate. 
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𝐹𝐸(𝑡) = 𝐾𝐿 𝑃𝑚𝑎𝑥  (1 −
𝑡

𝑡𝑝
) 𝑎 𝑏      for 0 ≤ 𝑡 ≤ 𝑡𝑝 (2a) 

𝐹𝐸(𝑡) = 0      for 𝑡𝑝 < 𝑡 (2b) 

Where 𝑃𝑚𝑎𝑥, is the maximum pressure of the explosion, 𝑡 is the duration of the 

simulation, and 𝑡𝑝 is the duration of the positive phase of the load. It should be noted 

that the equivalent load and stiffness are obtained by multiplying the force and the 

stiffness by the load factors (𝐾𝐿) [6]. 

Blast loading subjects steel plates to strain rates that can exceed 102 s-1[1]. Ignoring 

this effect would underestimate the dynamic yield stress and, hence, the overall 

resistance. In the present SDOF formulation the rate sensitivity of steel is introduced 

through the Cowper-Symonds law [11]: 

𝑓𝑦𝑘𝑑(𝑡) = 𝑓𝑦𝑘 [1 + (
𝜀̇(𝑡)

𝐷
)

1
𝑞

] (3) 

Where 𝑓𝑦𝑘 is the quasi-static yield strength, 𝜀̇(𝑡) is the instantaneous strain rate, 

and 𝐷 and 𝑞 are material constant (𝐷 = 40 s-1, 𝑞 = 5. How demonstrated in [12]). The 

rate-dependent model captures the elastic-plastic transition governed by a bilinear 

force-displacement relation, the amplification of yield strength given by Eq. (3), and 

the progressive change of boundary conditions that occurs when plastic hinges form 

along the plate edges (shown in Fig.2). 
 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: (a) Elastic phase; (b) Elastic-plastic phase; (c) Plastic phase. 
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For the elastic phase,  0 ≤ 𝑈𝐸 ≤ 𝑈𝐸,𝑒𝑙, the equation of motion reads: 

 

𝑀𝐸,𝑒𝑙
𝑑2

𝑑𝑡2
(2

𝑎2

ℎ

𝛼𝐸,𝑒𝑙

𝛽𝐸,𝑒𝑙

𝑓𝑦𝑘𝑑(𝑡)

𝐸
) + 𝐾𝐸,𝑒𝑙 2

𝑎2

ℎ

𝑓𝑦𝑘𝑑(𝑡)

𝐸

𝛼𝐸,𝑒𝑙

𝛽𝐸,𝑒𝑙
= 𝐹𝐸(𝑡)       (3a) 

Where 𝑀𝐸,𝑒𝑙 and 𝐾𝐸,𝑒𝑙 are the elastic lumped mass and stiffness, 𝑎 and ℎ are plate 

half-span and thickness, and 𝛼 and 𝛽 are coefficient achieved by [6]. Once the mid-

span displacement exceeds the elastic limit, 𝑈𝐸,𝑒𝑙 < 𝑈𝐸 ≤ 𝑈𝐸,𝑝𝑙, the tangent stiffness 

changes to 𝐾𝐸,𝑝𝑙 and Eq. (3a) become: 

 

𝑀𝐸,𝑝𝑙

𝑑2

𝑑𝑡2
(2

𝑎2

ℎ

𝑓𝑦𝑘𝑑(𝑡)

𝐸
[
𝛼𝐸,𝑒𝑙

𝛽𝐸,𝑒𝑙
+ (

𝛼𝐸,𝑝𝑙 − 𝛼𝐸,𝑒𝑙

𝛽𝐸,𝑝𝑙
)]) + 

𝐾𝐸,𝑝𝑙  (2
𝑎2

ℎ

𝑓𝑦𝑘𝑑(𝑡)

𝐸
[

𝛼𝐸,𝑒𝑙

𝛽𝐸,𝑒𝑙
+ (

𝛼𝐸,𝑝𝑙−𝛼𝐸,𝑒𝑙

𝛽𝐸,𝑝𝑙
)]) = 𝐹𝐸(𝑡)  

(3b) 

Where subscripts 𝑝𝑙 denote fully plastic values. At any plate point, (𝑥, 𝑦), the 

transverse displacement, 𝑤, is expressed as the product of an SDOF generalized 

coordinate,  𝑌(𝑡), and a spatial mode shape, 𝛹(𝑥, 𝑦): 

𝑤(𝑥, 𝑦, 𝑡) = 𝑌(𝑡)𝛹(𝑥, 𝑦) (4) 

For clamped edges: 

𝛹(𝑤, 𝑦) = 𝑐𝑜𝑠2 (
𝜋

𝑎
𝑥) 𝑐𝑜𝑠2 (

𝜋

𝑏
𝑦) (5a) 

𝑤(𝑥, 𝑦, 𝑡) = 𝑌(𝑡)𝑐𝑜𝑠2 (
𝜋

𝑎
𝑥) 𝑐𝑜𝑠2 (

𝜋

𝑏
𝑦) (5b) 

For simply supported edges: 

𝛹(𝑤, 𝑦) = 𝑐𝑜𝑠 (
𝜋

𝑎
𝑥) 𝑐𝑜𝑠 (

𝜋

𝑏
𝑦) (6a) 

𝑤(𝑥, 𝑦, 𝑡) = 𝑌(𝑡)𝑐𝑜𝑠 (
𝜋

𝑎
𝑥) 𝑐𝑜𝑠 (

𝜋

𝑏
𝑦) (6b) 

As described by [13] the curvatures are equal to the second time derivatives of 

displacements. For the case of fixed along all edges are: 

𝜕2𝑤(𝑥, 𝑦, 𝑡)

𝜕𝑥2
= −2𝑌(𝑡) (

𝜋

𝑎
)

2

[𝑐𝑜𝑠2 (
𝜋

𝑎
𝑥) − 𝑠𝑖𝑛2 (

𝜋

𝑎
𝑥)] 𝑐𝑜𝑠2 (

𝜋

𝑏
𝑦) (7a) 

And the corresponding curvature-rate is:  

𝜃̇𝑥(𝑥, 𝑦, 𝑡) = −2𝑌̇(𝑡) (
𝜋

𝑎
)

2

[𝑐𝑜𝑠2 (
𝜋

𝑎
𝑥) − 𝑠𝑖𝑛2 (

𝜋

𝑎
𝑥)] 𝑐𝑜𝑠2 (

𝜋

𝑏
𝑦) (7b) 

And for the phase with simple support on all edges: 

𝜕2𝑤(𝑥, 𝑦, 𝑡)

𝜕𝑥2
= 𝜃𝑥(𝑥, 𝑦, 𝑡) = −𝑌(𝑡) (

𝜋

𝑎
)

2

𝑐𝑜𝑠 (
𝜋

𝑎
𝑥) 𝑐𝑜𝑠 (

𝜋

𝑏
𝑦) (8a) 
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𝜃̇𝑥(𝑥, 𝑦, 𝑡) = −𝑌̇(𝑡) (
𝜋

𝑎
)

2

𝑐𝑜𝑠 (
𝜋

𝑎
𝑥) 𝑐𝑜𝑠 (

𝜋

𝑏
𝑦) (8b) 

At every time step, 𝜃̇𝑥 provides the instantaneous strain-rate, which is substituted back 

into Eq. (3) to update the dynamic yield strength and, in turn, the resistance terms in 

Eq. (3). This algorithm ensures full coupling between material-rate effects and global 

plate kinematics. 

 

3  Validation 
 

Validation of SDOF model is carried out on real-experimental data obtained from [1] 

and a companion finite-element (FE) model of a square plate (610 mm x 610 mm x 

12.7 mm) subjected to a  1 kg TNT charge at a 146 mm stand-off distance. The test 

rig, reproduced from [1], is sketched in Figure 3; Figure 4 shows the FE contour plot 

of the out-of-plane displacement at the instant of peak response.  

 

 

             
Figure 3: Experimental apparatus used in [1]. 

 

 

 

 

 

 
 

 

 

 

Figure 4: FE contour plot of the out-of-plane displacement at the instant of peak 

pressure. 
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The proposed SDOF predicts the mid-span time history with a peak-error of 4.7 % 

relative to the experimental trace (shown in Figure 5). It also matches the FEM 

envelope while suppressing the high-frequency flexural content that is outside the 

single-mode assumption. 

 
Figure 5: Measured versus modelled mid-span deflection history: experiment 

(dashed), FE (blue), SDOF (red). 

 

The computational cost is reduced by four orders of magnitude: an identical (Intel 

Core i7-11800H processor, 16 GB DDR4 RAM, 1024 GB SSD) full FEM results 

require 12 min, whereas the SDOF solution is obtained in 0.01 s. The agreement 

demonstrates that the reduced-order formulation retains sufficient fidelity for blast 

assessments while enabling the large number of realizations required for the 

probabilistic study presented in Section 4.  

 

4  Results 
 

Leveraging the computational speed of the SDOF, 15,000.00-run Monte-Carlo 

simulations were performed to derive fragility curves for three damage states-slight, 

moderate and severe-as a function of Hopkinson-scaled distance 𝑍 [14]. TNT charge 

mass, 𝑀𝑇𝑁𝑇, was treated as a log-normal variable; the base case considers 𝜇 = 50, 100 

and 200 kg with a coefficient of variation of 10 %. The peak reflected pressure applied 

in each realization follows the Kinney and Graham correlation [15]. 
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𝑃𝑚𝑎𝑥 = 𝑃0

808 [1 + (
𝑍

4.5
)

2

]

√[1 + (
𝑍

0.0408)
2

] [1 + (
𝑍

0.32)
2

] [1 + (
𝑍

1.35
)

2

]

 
(9) 

Where 𝑷𝟎 is the initial pressure. Performance levels are defined directly from the 

SDOF displacement response, is shown in Table 1. 

Table 1: Displacements thresholds for performance levels, extracted from SDOF. 

Slight Damage Moderate Damage Severe Damage 

𝑈𝐸,𝑒𝑙 𝑈𝐸,𝑝𝑙 = 𝑈𝐸,𝑒𝑙 +
𝑈𝐸,𝑝𝑙 − 𝑈𝐸,𝑒𝑙

2
 𝑈𝐸,𝑝𝑙 

 

The exceedance probability for a generic response variable, 𝑋, is obtained by 

numerical convolution: 

𝑃(𝑋 > 𝑥𝑜) = ∫ 𝑃(𝑋 > 𝑥0|𝑍)𝑝(𝑍)𝑑𝑧 ≅ ∑ 𝑃(𝑋 > 𝑥0|𝑍)𝑖

∞

𝑖=0

𝑝(𝑍)𝑖∆𝑍𝑖

+∞

−∞

 (10) 

The discrete exceedance points are approximated with a two-parameter sigmoid: 

𝑓(𝑍, 𝛽) =
1

1 + 𝑒𝑥𝑝−𝑏1(𝑍−𝑏2)
 (11) 

𝑓(𝑍, 𝛽) is the sigmoid function representing the probability of exceeding the specified 

damage threshold at a given scaled distance 𝑍. The output ranges between 0 and 1, 

capturing the cumulative probability of exceeding failure as the distance changes. 𝛽 

is a vector containing the parameters of the sigmoid function, which are estimated 

during the nonlinear regression fitting process. Specifically: 𝑏1 controls the slope of 

the sigmoid curve and 𝑏2 modifies the position of the inflection point of the sigmoid. 

The parameters 𝑏1 and 𝑏2 are estimated using a nonlinear regression fitting process, 

which iteratively modify these values to minimize the difference between the 

observed probabilities from the Monte Carlo analysis and those predicted by the 

sigmoid function. To ensure the reliability of the analysis, a target coefficient of 

variation (COV) below 10% was set for the maximum displacements [16]. The COV 

represents the ratio of the standard deviation to the mean, providing a normalized 

measure of the variability in the data relative to the average value. However, in cases 

where this target could not be achieved within 15,000.00 iterations, the analysis was 

terminated to avoid excessive computation times [7-10]. We recall that the 

computations were performed on a notebook with an Intel Core i7-11800H processor, 

16 GB DDR4 RAM, 1024 GB SSD. On average, each curve requires approximately 

18 hours of computation time. The analysis was performed on a sample plate whose 

properties are shown in Table 2.  
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Table 2: Properties of sample plate for fragility curves. 

Properties of sample solid steel plate for fragility curves 

Length a 0.700 m 

Width b 0.700 m 

Thickness h 0.003 m 

Density ρ 7850 kg/m3 

Steel yield strength fyk 275 MPa 

Steel elastic modulus E 210 GPa 

Positive phase time tp 1 ms 

 

 

 

 

 

 

 

The fragility curves for the experimental plates, shown in Figures 6-8, were 

produced considering the following TNT mass as a lognormal distribution with 

mean values of 50, 100 and 200 kg. 

 

 

 

 

 

 
 

 

Figure 6: Fragility curves slight damage conditions for the steel plate shown in 

Table 2. 



 

9 

 

 
Figure 7: Fragility curves moderate damage conditions for the steel plate shown in 

Table 2. 
 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8: Fragility curves severe damage conditions for the steel plate shown in 

Table 2. 
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5  Conclusions 
 

A rate-dependent, bilinear single-degree-of-freedom (SDOF) model has been 

developed and validated as a rapid alternative to full non-linear-element (FE) analysis 

for blast-loaded steel plates. The model reproduces peak mid-span displacement 

within 5 % experimental data while cutting CPU time from minutes to milliseconds, 

making large-scale Monte-Carlo studies feasible on a standard laptop. 

By embedding the SDOF in a 15,000.00-run probabilistic framework, fragility 

curves were produced for slight, moderate and severe damage states and for TNT 

masses of 50-200 kg. Results show that the median capacity distance increases and 

the slope 𝑏1 steepens with charge mass, and the transition between damage states 

narrows as deformation enters the plastic range.  

The curves provide designers with a computationally inexpensive, yet 

mechanically grounded tool for performance-based blast assessment and for screening 

mitigation options in the early stages of the project. Because the model is reduced 

order, its accuracy depends on correct calibration of elastic and plastic stiffness 

parameters; application to real structures should therefore be preceded by 

benchmarking against test data or high-fidelity simulations. 

Future work extends the formulation to other impulsive actions such as local 

impact or debris strikes, couple the SDOF with surrogate-based global-sensitivity 

analysis to quantify parameter importance, and integrate the approach into a digital-

twin framework for real-time reliability updating. Comparative studies with advanced 

FEM-based stochastic methods are planned to further delineate the range of validity 

and computational advantages of the proposed model. 
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