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Abstract

Uncertainty quantification allows a more robust estimation of the reliability of struc-
tures with random variabilities in material properties. Time-separated Stochastic Me-
chanics is an efficient and accurate method for uncertainty quantification of materials
with microstructure evolution. The method is based on a polynomial surrogate model
which separates random from time-dependent behavior. As a result, only a single
deterministic simulation has to be performed for each basis function. Analytical ex-
pressions for the expectation and standard deviation of quantities of interest, e.g., the
stress, can be derived. In this contribution, the Time-separated Stochastic Mechanics
is presented for structures with elasto-viscoplastic material behavior. The numerical
results show a great agreement with Monte Carlo reference solution on the material
point at vastly reduced computational costs. The application on the computation of an
artificial dam showcase the potential of the method for the uncertainty quantification
of civil structures.

Keywords: time-separated stochastic mechanics, uncertainty quantification, stochas-
tics, elasto-viscoplasticity, finite elements, material model.



1 Introduction

Due to the growing significance of uncertainty quantification in engineering simula-
tions, a variety of methods have been developed. An overview of the most commonly
employed methods is presented in Figure 1. In this figure, the methods have been
ordered by the computation speed from low to high.

Classically, the Monte Carlo sampling method [1-3] is used for uncertainty quan-
tification due to its simple implementation and vast applicability. In a nutshell, the
whole system of equations is simulated for a number of specific realizations of the un-
certain parameters. For a high enough number of samples, the expectation, standard
deviation and further stochastic quantities can be treated as converged. Undoubtedly,
this comes with a very high computational cost as many hundred up to thousands
of simulations might be needed to reach a sufficient error level. Quasi-Monte-Carlo
methods [4] try to optimize the convergence by using specific sampling rules.

More advanced methods for computationally expensive Finite Element Methods
have been developed under the collecting name of Stochastic Finite Element Methods.
These are based on a surrogate model which is constructed beforehand. Typically,
computations on the surrogate model are much faster compared to the full system of
equations. A comparison of the various methods can be found in [5,6]. The stochastic
collocation method [7,8] solves the system of equations at a limited number of special
evaluation points, often Smolyak points [9]. A polynomial surface is constructed such
that the solution is exactly matched at these points. Unfortunately, this method has the
recurring issue of instability, see [10].

The polynomial chaos expansion [11, 12] is another well known method. It uses
a orthogonal polynomial basis for the surrogate model. A Galerkin projection on
this basis of the system of equations is carried out. This enhances the stability com-
pared to the stochastic collocation method. Two main variants of the polynomial
chaos expansion are known in literature: a non-intrusive and an intrusive version.
The non-intrusive variant uses sampling methods, numerical integration or regression
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Figure 1: Literature review



approaches, see [13, 14]. Oversampling is required in order to guarantee robustness of
the surrogate. The intrusive version, also known as Spectral Stochastic FEM [15, 16],
generates a highly coupled system of equations to compute the coefficient of each ba-
sis function simultaneously. Clearly, this leads to a rather high computational effort.
Furthermore, the Finite Element Solvers solvers have to be adopted.

A method with an even higher computational efficiency is the Time-separated Stochas-
tic Mechanics (TSM) [17, 18]. The polynomial basis exactly matches the derivatives
up to a specific order with the parameterized solution. Conceptually, the idea is com-
parable to a Taylor series. The well known perturbation method [19,20] can be seen
as a special variant of the TSM. In particular, any microstructure development is ne-
glected for the perturbation method. The TSM, in contrast, is specifically designed for
microstructure evolution, i.e., for non-linear material laws.

In this contribution, the application of the TSM to civil structures with elasto-
viscoplastic behavior is presented. More indepth information on this specific appli-
cation can be found in [21]. In Section 2, the derivation of the TSM for an elasto-
viscoplastic material model is presented. In particular, the derivation of the TSM
surrogate and the uncertainty quantification based on the surrogate are explained. In
Section 3, numerical experiments are carried out on the material point and for an ar-
tificial dam to showcase the applicability of the method. A conclusion is presented in
Section 4.

2 Time-separated stochastic mechanics

The behavior of structures is not deterministic. Various effects as microstructural
variations, impurities and environmental factors lead to fluctuations of the material
properties. In return, this leads to changes of the macroscale behavior. Consequently,
the material parameters have to be modeled in dependence of a random variable &,
i.e., m(§). In the following, without loss of generality, we assume that £ is a zero-
centered random variable. The whole set of material parameters might be written
as M = {mq(&;, ma(&2i)} = M(E) with an arbitrary number of random variables.
In classical deterministic simulations, only the expectations (m;) are considered. In
contrast, the TSM takes the whole randomness of the material parameters into account.

2.1 Surrogate model

In general, the behavior of a structure is governed by the balance of linear momentum

Ly(u, 0, M(E)) := /5u-p'&dV—/6e-JdV
Q Q

—/(5u~b*dV— ou-t*dA=0 (1)
Q o9

with the acceleration 1, stress o, body force b* and traction force t*. The stress
o(e,a, M(E)) depends on the strain € = V%™u, some internal variable @ and the



uncertain material parameters M (Z). The internal variable o allows to take the state
of the microstructure into account for the stress computation.

As the microstructure develops over time, so does the internal variable. The evolu-

tion of the internal variable is described by means of a differential equation
Lo=0c—g(e,a ME)). (2)

The evolution equation for elasto-viscoplasticity is given as

dev(o)
* [[dev(a)]|
with the internal variable & = £'P. The Macaulay brackets are defined as (z), =
max (0, z). The deviatoric part of the stress is calculated as

Lyr =¢&® —n7 (||dev(a)|| - o¥) 3)

1
dev(a'):a—g(al+02+03)I:S-a.

The stress is given as o = E - (e — €'P).
In the following, we assume a random elasticity tensor and random yield limit
E=E®(1+¢F) (4)
o =V 4 £Y). (5
The random variables £E, ¢Y are assumed to be multivariate normal with zero mean.

It might be noted that other choices of the probability density function can be handled
without modification of the TSM.

The main idea of the TSM is the usage of a Taylor series in the random variables as
approximation of displacements and internal variable. A linear Taylor series is given
as

uM(t,2) = u®(t, ) + Fut(t @) + Eu'(t x) (©)

a™(tx) = 2" (t,x) + EFaf(t,x) + £ (1, 2) @
The strain results as ™M = V¥my ™M A Taylor series is a natural choice as the
approximation is best near to the expectation. For many probability density functions
most of the probability mass is located around the expectation. The extension to a
higher-order Taylor series is straight forward. However, it has been noted that for
many practical problems, a linear or quadratic Taylor series might suffice, see [19,20].
The Taylor series separates the time-dependent but deterministic terms (w9, uf, uY
and correspondingly for « ) from the random but time-independent variables £E, £Y.

The Taylor series in Equations (6) and (7) are inserted in the governing equations
in (1) and (2). Therefore, the balance of linear momentum for elasto-viscoplasticity in
quasi-statics results as

Lo = / PRON (E(O)(l +£E)> ) (sel,(o) 4 ¢EeelE +€Y€el,Y) dv
Q

— / Su® . prdV — / u® . t*dA =0 Vi viu®
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where the relationship €' = & — £'? is used.
The zeroth-order terms result by evaluating Equation (8) for £E = &Y = 0, ie.,

L3P | cE_gv_0- Unsurprisingly, the usual deterministic system of equations result as
/ 5@ E® . O qy — / ou® v dV — [ u® . t"dA=0, (9
Q Q o9
The first-order terms are computed as
dLgp
Tégg gYO:/(Se(O)-(E(l)-s (0 L EO . gelBy 7 = 0, (10)
== Q
dLs®
u _ 0) . (E(0) , gel.Y =
eV lee_er_o /Qéa (E® - e%t)dV = 0. (11)

Similarly, the TSM terms of the evolution equation are calculated. The zeroth-order
term is the usual evolution equation given in (3). The term &'PF is computed by

ddﬁsg':p ey =& ) (12)
. ev(o|| — oy V(@ d o dev(o),
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for each component ~y of & No summation is carried out over the index ~y. The

Heaviside step function is given as H(z) = {(1)’ i i 8 The further derivatives are
found as | -
d(gE (dev(o)y) =S-EW . (¢ —g»0)) _g.EO . gE (13)
and
el = ~lldev(a)| [ Tk @) 14
vp,Y

For the term €7, the evolution equation is computed by evaluating

dﬁevp
de |EE gY 0 0 (15)
The evolution equation results as
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with the derivatives

%(dev(a’)d> — S.EO.gwY (16)
d /dev(o), \ 1 d 4 o
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2.2 Uncertainty quantification

The uncertainty quantification can be carried out as soon as the time-dependent terms
have been calculated. This can be done in a post-processing step.

Internal variable The expectation of the internal variable €'? is given as the zeroth-
order term

(e®) = &P, (19)
The variance of the viscoplastic strain is computed with the relation
\Y \Y% 2 Vi
Var(e) = ((2)°) — {(eP))? (20)
for each component cv. The second moment ((XP(t))?) results as
<(5";P)2> — (8?’(0))2 + (€YYP’E)2 + (5:/,p’Y(t))2 + 5;p,E€;p,Y<€E£Y>' (21)

A possible correlation of the random variables is accounted for by the last term of
Equation (21).

Stress The stress is given as
o =EO. (g _ g1 (E(l) (e® — g0y L EO . (£F - svp,E)) ¢k
+E@ . (e¥ — Y)Y, (22)
The expectation is found as
(o) = g©) . (6(0) — EVI%(O)). (23)
For the variance, the relation
Var(a,) = (03) — (05)? (24)
involving the second moment is employed again.

The second moment of the stress for each component « is given as

2 2
(02) = (0% + (B (e — P @) + EQ(eE — )+ (EQ (el — ™))

gl Vb e e
v 0 vp,E vp,
N (Egle)(ééo) — e L EO(E )) (EQ (Y —eY)) (€5, €Y. (25)

As v is a fixed component index, no summation is performed over this index.
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Figure 2: Material point simulation compared to reference Monte Carlo simulations.

3 Results

First, the TSM approximation is compared on the material point against a Monte Carlo
reference solution. At the material point, the strain is given as a deterministic time-
proportional function and only the evolution equation is evaluated. The material pa-
rameters are chosen as (\) = 12 GPa, (u) = 8 GPa, (¢¥) = 100 GPa. A rather low
viscosity of = 10 GPas is chosen to showcase the approximation quality of the TSM
even for rapid changes in the behavior. The results are presented in Figure 2. The ref-
erence simulation with 1000 Monte Carlo samples is shown in black, the TSM results
in red. The expectation is displayed as a solid line, the expectation & standard devi-
ation as a dashed line. In the stress-strain diagram in Figure 2a, a hysteresis is well
visible. Furthermore, a change in the standard deviation over time is apparent. This
highlights the coupling of stochasticity and time. Nevertheless, the TSM approxima-
tion is nearly identical to the reference. The same holds for the visco-plastic strains in
Figure 2b. Contrary to the expectation that an approximation based on a Taylor series
would lead to large deviations near to the yield limit, near to no difference is visible.
This is due to the fact that the randomness of the yield limit smooths the transition be-
tween elastic and viscoplastic material behavior. The TSM needs approximately the
same amount of time as just 20 individual deterministic simulations. A Monte Carlo
simulation with this low amount of samples would simply be not converged. Most of
the time take the evaluations of Equation (25). For simulations on the structural level
the overhead of the evaluations of the analytical equations in Section 2.2 reduces rela-
tively to approximately 10 - 20%, see [21]. The speed-up factor of the TSM compared
to the the reference solution is approximately 50.

This speed-up enables uncertainty quantification of civil structures with the Finite
Element Method. Here, the boundary value problem of an artificial dam is presented.
The dam is discretized by approximately 55.000 quadratic tetrahedron elements. The
material parameters are chosen as (\) = 58 GPa, (u) = 39GPa, (c¥) = 100 MPa



and n = 100 GPah. A normal distribution with 10% coefficient of variation is as-
sumed for all random variables. A force due to the water level on the outside of the
dam is given. The loading time of the dam is considered negligible compared to the
time frame of the microstructure evolution. In Figure 3, the expectation and standard
deviation of the stress are presented for two time points. In Figures 3a and 3c, the mi-
crostructure still develops and the stress increases whereas in Figures 3b and 3d, the
microstructure is nearly stationary. Interestingly, the standard deviation in the middle
part of the dam develops contrary to the expectation. The highest standard deviation
does not coincide with the highest expectation of the stress. The stress evolution over
time of a single element in this area is presented in Figure 4. Here, the solid line indi-
cates the expectation, the dashed lines show the expectation + standard deviation. The
standard deviation first increases with growing expectation but decreases to a constant
value as the change of the expectation diminishes. This highlights the fact, that there
is no simple relationship between expectation and standard deviation for structures
with microstructure evolution.

4 Conclusion

In this paper, the Time-separated Stochastic Mechanics is presented as an efficient and
accurate method for uncertainty quantification of structures with microstructure evo-
lution. Here, the application to an elasto-viscoplastic material behavior is investigated.
Numerical examples highlight the great agreement to Monte Carlo reference solutions
but also the importance of uncertainty quantification for structures with microstructure
evolution.
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