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Abstract 
 

Environmental excitations acting on engineering structures, such as wind, ocean 

waves, and track irregularities, are often modelled as stationary Gaussian stochastic 

processes, with their statistical characteristics quantitatively described by the power 

spectral density functions. These excitations can be reproduced through stochastic 

simulation by filtering white noise using a constructed filter. A linear analog filter 

system is proposed in this study for simulating excitation power spectral density 

functions with non-rational characteristics. By introducing a fractional-order 

derivative operator, the proposed model can be applied to the simulation of turbulent 

wind speed with fractional-order asymptotic spectral properties. For track irregularity 

spectra with multiple segments, a corresponding piecewise form can be adopted in the 

model and efficient simulation can be achieved using a frequency-domain approach. 

The effectiveness and efficiency of the proposed method are validated through 

applications in the simulation of various commonly used fluctuating wind speed 

spectra and railway track irregularity spectra. To enhance adaptability, filter 

parameter conversion formulae are provided, allowing the benchmark model to be 

conveniently extended to scenarios with varied spectral parameters. The proposed 

method offers an efficient approach for the simulation of Gaussian stationary 

excitations with complex spectral properties. Further, it provides a foundation for 

stochastic response analysis and reliability analysis on the probability density level, 

say, by the method based on the dimension-reduced probability density evolution 

equation. 
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1  Introduction 
 

Uncertainty is an inherent feature in engineering problems. Most environmental loads 

exhibit appreciable randomness [1], such as wind, ocean waves, railway track 

irregularity, and seismic ground motion, etc. Despite their different physical origins, 

these excitations can often be modelled as stationary Gaussian stochastic processes 

under certain conditions, with their statistical characteristics described by the second-

order statistical moment, in most cases, the power spectral density (PSD) function [2]. 
 

The PSD functions of different excitations vary significantly due to their distinct 

physical backgrounds. While some PSD models, such as the spectra for earthquake 

ground acceleration [3], take the form of simple rational functions and are relatively 

easy to approximate and simulate, other excitations exhibit more complex spectral 

features. For instance, track irregularity and fluctuating wind speed spectra often 

demonstrate non-rational characteristics, including fractional-order asymptotic 

behaviour and multi-segment structures. In Chinese high-speed railway lines, track 

irregularity PSDs typically show both fractional-order and multi-segment properties 

[4], while turbulent wind speed spectrum, described by the Kaimal model [5], 

commonly exhibits fractional-order asymptotic decay with an exponent of -5/3. 
 

To simulate such noise-like stochastic excitations, two main approaches are widely 

adopted: the spectral representation method and the filtering method. The spectral 

representation method, inspired by Rice’s pioneering work in signal processing [6,7], 

was further developed by Borgman [8] and Shinozuka [9,10]. It has been applied in 

various fields and its performance has been significantly improved by some methods 

including the stochastic harmonic function method [11], and the Karhunen-Loeve 

expansion [12], etc. However, spectral representation primarily serves numerical 

analysis based on Monte Carlo simulation, which can be computationally demanding 

for the analysis of high-dimensional nonlinear structures [13]. On the other hand, 

filtering methods, including autoregressive (AR), moving-average (MA), 

autoregressive moving-average (ARMA), and analog filter models, provide a direct 

and efficient approach for simulating stochastic processes [14,15,16,17]. Unlike the 

spectral representation method, filter models can avoid the need for computing 

trigonometric functions and takes the advantage of making the problems more 

analytically tractable [18]. 
 

Recent advances in the probability density evolution method (PDEM) have 

renewed interest in the filtering methods. The dimension-reduced probability density 

evolution equation (DR-PDEE) [19,20], developed within the PDEM framework [1], 

offers an efficient and accurate approach for the stochastic response analysis and 

reliability analysis of high-dimensional nonlinear systems. In this context, 

constructing a linear filter system that combines analog and digital filters is essential 

for formulating an augmented system and establishing the associated Itô stochastic 

differential equation. Further, it has been illustrated that the DR-PDEE is also 
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applicable for nonlinear systems with fractional derivative elements and non-

Markovian responses [21]. This theoretical framework has shown promising 

applications in ocean and earthquake engineering [16,17,22], motivating the 

development of a more versatile filter model capable of handling complex PSD 

characteristics. 
 

This study develops an efficient analog filter system for simulating excitation PSD 

functions with complex characteristics, including asymptotically fractional-order and 

multi-segment properties. The proposed method has been applied to the simulation of 

fluctuating wind speed with the Kaimal spectrum and railway irregularities with the 

Chinese high-speed track irregularity spectra. The model is expected to enhance the 

accuracy and computational efficiency of stochastic simulation and provide a solid 

foundation for reliability analysis on the probability density level in engineering 

problems. 

 

 
 

2  Basic Formulation of the Versatile Filter Model 
 

A stochastic process ( )X t  could be expressed as the output of a filter system with its 

input being white noise, that is, 
 

 

( ) ( )G ,0 ,X t t  =    
 (1) 

where G  is a generalized linear filter operator, and ( )t  is Gaussian white noise. 
  

By solving the optimization problem of minimizing the integral of the squared error 

between the approximated and target PSD functions, the filter system G  can be 

designed with high accuracy. The basic form of the versatile filter model could be 

written as [17] 
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where 
iX , 

iX  and 
iX  ( 1,2, ,5i = ) are the displacement, velocity and acceleration of 

the i -th DOF, respectively; ( )1,2,3,4iG i =  are linear operators. There are 11 

parameters to be determined in Equation (2) and they can be expressed as a vector 

, 
 

 

( )
T

0 1 1 2 2 3 3 4 4 5 5 ,S          =

 (3) 

where 
0S  is the intensity of the white noise ( )t . 
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Given a target PSD, the linear operators in Equation (2) should be selected so that 

the output PSD conforms with the characteristics of the target one, and the unknown 

parameters in   can be identified using optimization algorithms, for instance, the 

genetic algorithm [17]. 

The output signal of the filter could be written as a unified form, 
 

 

 5 ,iY G X=

 (4) 

where the linear operator 
5G  could be the identity operator, the integer- and even-

fractional-order differential operator, etc. Clearly, Equation (4) plays a similar role as 

the observation equation in the optimal control theory. The filter model mentioned 

above has been successfully applied to the simulation of random ocean waves with 

arbitrary JONSWAP spectra [17]. 
 

2  Application in the Simulation of Track Irregularities 
 

In the dynamics of vehicle-track coupled systems, the structural vibration majorly 

stems from track irregularities caused by the random distribution of track geometric 

state [4]. To quantify the randomness involved in this problem, the track irregularity 

is generally expressed as stochastic processes and their PSD function describing the 

second-order statistical information is utilized in the stochastic simulation. 
 

In this section, the proposed versatile filter model is applied in the approximation 

of the Chinese high-speed railway track irregularities with piecewise non-rational 

properties.  
 

2.1  Track Irregularity Spectrum of Chinese High-speed Railway Lines 
 

Typically track irregularity spectra take the form of integer-order rational functions, 

for instance, the railway track irregularity spectra in the USA [23], in Germany [24], 

and the track irregularity spectra for main railway lines in China [4]. It is not difficult 

to approximate these types of spectra using the filter model and optimization method 

as described in [17].  
 

Nevertheless, with the advancement of high-speed railway technology, ballastless 

tracks have been increasingly adopted in engineering practice. Consequently, their 

track irregularity spectra have attracted growing attention and research. For Chinese 

high-speed railway lines with design speeds in the range of 300 to 350 km/h, a 

piecewise non-integer-order PSD model was proposed in [25] based on statistical 

analysis of detection data. The spectrum has a unified form for each segment as [4,25] 
 

 

( )high-speed ,
n

A
S f

f
=

 (5) 

where f  is the wavenumber in 1m− ; A  and n  are the characteristic parameters and 

they vary according to different segments and the irregularity type. The values of these 

parameters for the track cross-level irregularity of Chinese high-speed railway lines 

are listed in Table 1.  
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To verify the efficacy of the proposed versatile filter model for the approximation 

of track irregularity spectrum with piecewise non-rational properties, two approaches 

have been adopted based on the filter system in Equation (2), that is, a single filter 

model and a multi-segment model. The former has a smooth function form while the 

latter fits the target PSD with higher accuracy. One of these approaches can be 

selected for use based on the needs of the actual problem. 
 

Segment 1 Segment 2 Segment 3 

A  n  A  n  A  n  

3.614810-3 1.7278 4.368510-2 1.0461 4.586710-3 2.0939 

Wave number 1f  for 

separating point 1 (m-1) 

Wave number 2f  for 

separating point 2 (m-1) 
 

0.0258 0.1163  

 

Table 1: Characteristic parameters of the track cross-level irregularity PSD of 

Chinese high-speed railway lines [4]. 
 

2.2  Single Filter for the PSD Approximation 
 

In the track-vehicle coupled dynamics [4] and stochastic response analysis of 

structures [1], it is preferable under some circumstances to have a continuous and 

smooth filter model for the excitation simulation. Thus, a single function form of the 

proposed filter system is first introduced in this section.  
 

Note that the wavenumber range of the high-speed railway track irregularity lies 

between 10.01 m−  to 11 m− , the filter model is designed as follows, 
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 (6) 

 

and the filter parameters values are listed in Table 2. 

 
 

Name 
0S  1  1  2  2  3  

Value 47.8911 -1.6939 0.2074 0.1367 10.9183 0.0090 

Name 
3  4  4  5  5   

Value -0.2241 0.0665 2.8762 -0.6752 -27.5352  

 

Table 2: Filter parameter values for the track cross-level irregularity PSD of Chinese 

high-speed railway lines. 
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The comparison between the target track irregularity spectrum and the filter 

approximation is displayed in Figure 1. From the figure, it can be seen that the overall 

approximation is achieved by the single filter model while minor deviation inevitably 

exists around the separating points. 
 

 

          (a) Linear coordinates                                     (b) Logarithmic coordinates 
 

Figure 1: Comparison between the target track irregularity PSD and its 

approximation by the single filter model. 
 
 

2.3  Multi-segment Filter for the PSD Approximation 
 

To improve the accuracy of the filtering approximation, a multi-segment filter model 

is proposed based on the characteristic of target PSD function. Since the function form 

for a single segment is relatively simple compared with the whole curve, the degrees 

of freedom of the corresponding filter for that segment could be reduced. The equation 

of motion for each segment of the filter model could be expressed as 
 

 

( )2

1 1 1 1 1 1

2

2 2 2 2 2 2 1

2 .

2 .

X X X t

X X X X

   

  
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

+ + =  (7) 

Note that the signals of the three sub-systems influence each other, it is thus 

necessary to introduce a post-processing step. Denote  L HL ; ,Y f f  as an operator that 

limits the wavenumber of the signal Y  between Lf  and Hf , the output of the multi-

segment filter system can be written as 
 

 

     1 1 2 1 2 3 2L ;0, L ; , L ; ,1 ,Y Y f Y f f Y f= + +

 (8) 

where 1Y , 2Y  and 3Y  are the output signals of the three sub-filters, respectively. The 

operator L  can be efficiently realized using Fourier transform and its inverse. 
 

The parameters of the multi-segment filter system are listed in Table 3, and the 

comparison between the approximated PSD function and the target one is shown in 

Figure 2. It should be pointed out that the comparison is both shown in linear 
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coordinates and logarithmic coordinates, and no significant deviation can be detected. 

Thus, it can be seen that the approximation provided by the proposed multi-segment 

filter model matches the target spectrum with high accuracy, and the parameters 

involved does not significantly increase compared with the single filter model.  
 

Parameter Segment 1 Segment 2 Segment 3 

0S  599.0526 77.7836 38.7397 

1  -0.3315 -2.7432 0.4807 

1  129.9852 19.2610 40.3037 

2  0.1104 -0.0116 -0.0474 

2  37.2786 0.0026 -23.3827 

 

Table 2: Parameter values for the multi-segment filter model. 
 

 

  

           (a) Linear coordinates                                   (b) Logarithmic coordinates 
 

Figure 2: Comparison between the target track irregularity PSD and its 

approximation by the multi-segment filter model. 
 

 

 

3  Application in the Simulation of Fluctuating Wind Speed 
 

In engineering, wind speed is commonly decomposed into the mean wind speed 

component and the fluctuating wind speed component, and the latter is quantitatively 

described by the PSD function [26]. The widely used wind speed spectra include the 

Davenport spectrum [27] and the Kaimal spectrum [28]. Due to the asymptotic 

fractional-order characteristic of the PSD functions, in this section the versatile filter 

model is combined with a fractional-order operator to improve the accuracy of the 

filtering approximation. 
 

3.1  Kaimal Spectrum of Fluctuating Wind Speed 
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Based on the similarity theory and collected wind field data, the Kaimal spectrum that 

describes the nonhomogeneous wind speed distribution in space was proposed by [28]. 

The PSD model can be expressed as [26] 

 

( )
( )

2

Kaimal 5 3

400

1 50

u f
S

f






=
+

，

 (9) 

where u  is the shear velocity of the flow in the atmospheric boundary layer, z  is the 

reference height above surface, zv  is the mean wind speed at the reference height, and 
 

 
2 z

z
f

v




=

 (10) 

is referred to as the Monin or similarity coordinate [26]. 
 

3.2  Fractional-order Filter for the PSD Approximation 
 

The Kaimal spectrum has an asymptotic 5 3−  order decay trend, which is challenging 

for an integer-order filter model to accurately capture. To solve this problem, the 

fractional derivative was introduced and incorporated in the analog filter in [29]. In 

this study, a different approach with fractional derivatives is proposed based on the 

versatile filter model to improve the consistency.  
 

The Caputo fractional-order derivative is one of the widely used definitions in the 

theory of fractional calculus [30]. The Caputo derivative of a fractional order  for a 

function ( )g t  is defined as [30] 
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where D  is the Caputo derivative operator of order  ,   denotes the Gamma 

function and ( )g t  is the first-order derivative of ( )g t . 
 

According to the power order of the Kaimal spectrum, a fractional derivative of 

order 1 6  could be taken as 
5G  and incorporated into the proposed filter model in 

Equation (2). The operators 
1G  to 

3G  are taken as the second-order derivative, and 
4G  

is taken as the first-order derivative, so that the output signal ( )V t  of the filter model 

is written as 
 

 

( ) ( ) ( )1/6

5 5 5D .V t G X t X t= =  
 (12) 

It should be pointed out that the fractional derivative in [29] is embedded in the 

equation of motion of the filter system, which could increase the computational cost 

if the equation is solved in the time domain. However, this issue can be avoided since 

the fractional derivative is relatively independent of the filter system. 
 

The parameter values of the fractional filter system are shown in Table 3 for a 

benchmark case where the mean wind speed at the reference height is taken as 15 m/s. 

The output PSD of the fractional filter model together with the target Kaimal spectrum 
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are depicted in Figure 3. The comparison demonstrates that satisfactory 

approximation to the Kaimal spectrum is achieved by the proposed filter model for 

the benchmark case. 
Name 

0S  1  1  2  2  3  

Value 1.729 0.00528 0.00113 0.00908 0.198 0.00695 

Name 
3  4  4  5  5   

Value 0.0452 0.00267 0.457 0.0256 1.196  

 

Table 3: Parameter values for the fractional filter model. 
 

 
 

  

   (a) Semi-logarithmic coordinates                         (b) Logarithmic coordinates 
 

Figure 3: Comparison between the target Kaimal spectrum and its approximation by 

the fractional filter model. 
 

 
 

 

The load condition of wind fields varies significantly, making the parameters in the 

Kaimal spectrum change accordingly. If the approximation of the proposed filter 

model is limited to the benchmark case, it will be difficult to find applications in 

general problems in wind engineering. To address this issue, the following conversion 

formulae are proposed to extend the filter model to target spectra with arbitrary 

parameters, 
 

 

1
1 0 ,  1,2, ,5;z
i i

z

v
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v
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 (13) 
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where 1zv  is the altered reference speed in the new target PSD, 
K,00S , 0i  and 0i  (

1,2, ,5i = ) refer to the parameters in the benchmark filter model, while 
K,01S , 1i  and 

1i  ( 1,2, ,5i = ) refer to the filter parameters for the new target PSD function. 

4  Conclusions and Contributions 
 

A filter model capable of simulating various excitations with their PSD functions in 

non-rational forms is proposed. The model can achieve high accuracy for the 

simulation of excitations with integer-order spectra, including the JONSWAP ocean 

wave spectrum and the German railway track irregularity spectra. For the Chinese 

high-speed railway track irregularity with a piecewise PSD form, a multi-segment 

analog filter composed of three 2-DOF systems was designed. By applying the FFT 

algorithm, the model achieves high accuracy without compromising efficiency. 

Additionally, when incorporating fractional-order derivatives, the model can 

accurately simulate wind speed spectra with fractional-order asymptotic behaviour. 

The parameter conversion formula derived from the benchmark filter system extends 

the model to different spectral parameters, significantly expanding its applicability in 

engineering practices.  
 

This method offers a reliable alternative for simulating various random processes 

and can be further enhanced by phase control techniques for simulating random fields. 

Its high accuracy and broad applicability make it suitable for facilitating stochastic 

response and reliability analysis on the probability density level. 
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