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Abstract

Stochastic resonance is a phenomenon where noise enhances a nonlinear system’s
ability to respond to weak periodic excitation. This effect is particularly relevant in
bistable systems encountered in post-critical aeroelastic conditions, where purely de-
terministic models fail to capture observed transitions under unsteady aerodynamic
loading. This study explores stochastic resonance in a nonlinear Duffing-type oscilla-
tor driven by harmonic forcing and additive white noise, representing a reduced model
of a prismatic beam in crossflow, inspired by wind tunnel tests on bridge-like struc-
tures. The paper complements a previously developed approximative framework for
analysis of the Fokker–Planck equation, which employs a periodic expansion linked
with the method of stochastic moments. This approach provides a detailed and struc-
tured view of the evolving probability density, offering greater interpretability than
standard black-box finite element methods, which are also used for comparison. The
results are examined in detail against a FEM benchmark, and potential directions for
improving the method—particularly with respect to transient accuracy and numerical
stability—are outlined.
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1 Introduction

Stochastic resonance (SR) is a nonlinear phenomenon wherein random noise interacts
constructively with a weak periodic signal to amplify a system’s response. Originally
introduced in the context of Brownian motion by Kramers [1] and later applied to
climate models by Nicolis [2, 3], SR has since been widely explored across various
scientific domains, as reviewed in [4, 5]. It typically manifests in bistable systems,
where noise-driven transitions between quasi-stable states become synchronized with
an external periodic input.

The relevance of SR spans disciplines such as optics, plasma physics, chemistry,
biophysics, and signal processing. In engineered systems, SR can be seen both as a
beneficial mechanism—for example in enhancing sensor sensitivity—or as a destabi-
lizing factor, especially in contexts like aeroelasticity and plasma confinement, where
it may contribute to unwanted vibrations or loss of stability. For practical applications
and review in the engineering context, see [6].

Within aeroelastic research, SR has been proposed as a plausible explanation for
certain post-critical dynamic behaviors. Although not yet a widely confirmed phe-
nomenon in this field, the concept offers a compelling framework for interpreting some
observed transitions in slender structures subjected to wind loading. Wind tunnel ex-
periments on two-dimensional rectangular-section models have documented complex
dynamics, such as divergence, buffeting, and mode switching, that are consistent with
SR-like effects. These behaviors can be modeled by bistable nonlinear oscillators
subjected to combined harmonic and stochastic forcing, as discussed in [7].

Motivated by this hypothesis, the present study investigates SR as a modeling tool
for post-critical aeroelastic effects in prismatic beams exposed to crossflow. The sys-
tem is represented as a single-degree-of-freedom (SDOF) Duffing oscillator with ad-
ditive white noise and harmonic excitation, capturing the essence of noise-induced
switching and resonance amplification in a simplified yet physically meaningful man-
ner.

This work extends the earlier research presented in [8], where the authors analyzed
the Fokker–Planck equation (FPE) associated with a Duffing-type oscillator under
harmonic and stochastic forcing. That study combined semi-analytical and numerical
approaches—including Galerkin-based FPE solutions and stochastic simulations—to
investigate both stationary and transient dynamics. The present work builds on these
foundations by analyzing the Galerkin-based solution in greater detail, aiming to as-
sess its practical applicability and limitations more thoroughly than was possible to
include in the original publication. It appears that the numerical techniques used ex-
hibit notable drawbacks. In particular, the application of orthogonal Hermite polyno-
mials as basis functions in the Galerkin framework occasionally leads to non-physical
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results, such as negative probability densities.
To address these shortcomings, exponential polynomial basis functions have been

proposed as a promising alternative [9]. These functions offer improved approxima-
tion capabilities, particularly in capturing the tails of probability distributions. Recent
developments in extending this approach to nonlinear, non-stationary systems [10],
along with refinements that outperform Monte Carlo simulations in terms of accu-
racy [11], further underscore its potential. Another possible direction is the use of
hierarchical basis functions such as orthogonal splines. Nonetheless, implementing
and testing these methodologies lies beyond the scope of the present paper.

The stochastic moment method—essentially a Galerkin scheme with globally sup-
ported basis functions—retains several advantages despite its numerical challenges.
While it demands the integration of high-order polynomials, potentially affecting sta-
bility and efficiency, it also facilitates access to multiple levels of approximation (mo-
ments) that enrich the interpretability of the resulting solution. This layered structure
makes it a compelling alternative to black-box finite element method (FEM) solvers or
highly specialized methods like those in [12]. In this study, the proposed method is di-
rectly compared to a reference FEM solution computed using the standard NDSolve
function in Wolfram Mathematica, serving as a benchmark for both transient and
cyclo-stationary behavior.

The structure of the paper is as follows. After this introduction, the governing math-
ematical model is presented. This is followed by a description of the semi-analytical
method based on [8], with selected derivation steps omitted for brevity. Subsequently,
the results for a specific case study are compared in detail with the FEM solution
and critically discussed. Finally, conclusions are drawn and suggestions for future
improvements are outlined.

2 Theoretical Model

To capture the essential features of the aeroelastic systems under consideration, the
full two-dimensional aeroelastic problem is progressively reduced to a manageable,
yet representative, one-dimensional nonlinear dynamical model.

A nonlinear bistable oscillator of the Duffing type is adopted, governed by the
following differential equation:

ü+ 2ωbu̇+ V ′(u) = P (t) + ξ(t) . (1)

where V (u) is the potential energy introduced in a form corresponding with the Duff-
ing equation:

V (u) = −ω2
0

2
u2 +

γ4

4
u4 ⇒ V ′(u) = dV (u)/du = −ω2

0 · u+ γ4 · u3 , (2)

and ξ(t) is the Gaussian white noise of intensity 2σ2 respecting conditions:

E{ξ(t)} = 0 ; E{ξ(t)ξ(t′)} = 2σ2 · δ(t− t′) . (3)
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Figure 1: Bistable nonlinear system: a) Symmetric – b) Non-symmetric potential.

On the right hand side, the external excitation is defined as a harmonic force per unit
mass, with P0 denoting the amplitude and Ω the excitation frequency,

P (t) = P0 exp iΩt . (4)

This system exhibits bistability, characterized by two potential wells separated by
an unstable equilibrium. When the amplitude and frequency of external harmonic
excitation and the noise intensity are optimally tuned, SR can emerge. In SR, noise
facilitates synchronized transitions between wells in response to periodic forcing.

The system’s linear dynamics are governed by typical circular frequencies, ω0

(eigenfrequency) and ωb (damping). The linear component of the potential deriva-
tive V ′(u) renders the origin metastable, while a cubic term stabilizes the system at
larger displacements. Figure 1 illustrates two cases: (a) a symmetric potential with
equal energy barriers for both directions, (b) an asymmetric potential, influenced by
an added linear stiffness, possibly shifting the system towards monostability.

The response described by Eq. (1) can be significantly amplified by introducing an
optimal noise level, yielding SR. This concept, rooted in nonlinear optics, is analogous
to photon-assisted inter-well hopping [4]. For a symmetric bistable potential, and in
the absence of periodic forcing, the escape is approximated by the Kramers rate [1]:

ωe =
√
2 exp(−∆V/T ) . (5)

Here, ∆V is the barrier height and T the absolute temperature, which is proportional
to the noise intensity σ2 in Eq. (3). Though developed for nonlinear optical systems,
the Kramers formula has since found broad application across different fields, [13], in
both theoretical and experimental contexts.

2.1 Fokker–Planck Equation Analysis

The semi-analytical method evaluates the response probability density function (PDF)
of system (1), assuming that both the input and output behave as Markov processes.
This assumption permits the application of the FPE as the primary analytical tool.
A semi-analytical solution is pursued using the stochastic moment method with non-
Gaussian closure, under the assumption of a multiharmonic, periodic response.

Since the noise in Eq. (1) is additive, no Wong-Zakai correction is required [14,15].
The corresponding FPE can therefore be directly formulated, as outlined in [16]. For
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the SDOF system, the FPE for the PDF p = (u, v, t), where v = u̇, is given by:

∂p

∂t
= −v

∂p

∂u
+

∂

∂v
((2ωb · v + V ′(u)− P (t)) p) + σ2∂

2p

∂v2
(6)

together with boundary and initial conditions:

lim
u,v→±∞

p(u, v, t) = 0 , (7a)

p(u, v, 0) = δ(u, v) . (7b)

Assuming P (t) = 0 and that the excitation is purely stationary random, the right-
hand side of Eq. (6) becomes time-independent. In this case, the Fokker-Planck equa-
tion reduces to its stationary form and admits a Boltzmann-type solution [17, 18]:

p0(u, v) = D exp

(
−2ωb

σ2
H(u, v)

)
. (8)

Here, D is a normalization constant, and H(u, v) is the system’s Hamiltonian:

H(u, v) =
1

2
v2 + V (u) =

1

2
v2 − 1

2
ω2
0u

2 +
1

4
γ4u4 . (9)

This leads to a separable solution:

p0(u, v) = pu(u) pv(v) , (10)

pu(u) = Du exp

(
−2ωb

σ2

(
1

2
ω2
0u

2 +
1

4
γ4u4

))
, (11)

pv(v) = Dv exp

(
−2ωb

σ2

1

2
v2
)

. (12)

This shows that u and v are stochastically independent in the stationary regime.
For both random and periodic periodic loading, the stationary, time-independent

Boltzmann-type expression from Eq. (8) can be used as a base, modulated by a space-
and time-dependent series. For large times (t → ∞), the PDF may become periodic
or cyclo-stationary in time.

Given the linearity of the Fokker-Planck equation, the periodicity of the PDF is ex-
pected to align with the frequency Ω of the deterministic excitation and its harmonics.
Thus, the solution may be approximated by the following Fourier-type expansion:

p(u, v, t) = p0(u, v)
J∑

j=0

qj(u, v) exp(i jΩ t) . (13)

Here, p0(u, v) is the stationary component from Eq. (8), and Ω denotes the frequency
of the harmonic excitation. This series constitutes a weak solution to the FPE that is
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periodic with period T = 2π/Ω, providing a valid representation within a single cycle.
To incorporate transient behavior or non-stationary dynamics in the PDF, an alterna-
tive expansion is required—one based on modified coefficient functions qj(u, v, t) that
retain explicit time dependence rather than assuming a fixed periodic structure. For
such purposes, the standard approach based on the method of lines may be employed.

The unknown functions qj(u, v) in Eq. (13) can be determined using the gener-
alized method of stochastic moments, as described in [16]. Applying the Galerkin
method, Eq. (13) is substituted into the Fokker-Planck equation (6), and the result-
ing expression is projected onto a set of testing functions α(u, v) by multiplying both
sides accordingly.

In [8], the functions α(u, v) and the expansions for qj(u, v) are chosen in the fol-
lowing polynomial-Hermite form, which offers analytical advantages:

α(u, v) = αr,s(u, v) = ur Hs(βv) , r = 0, . . . , R; s = 0, . . . , S , (14)

qj(u, v) =
R∑

k=0

S∑
l=0

qj,kl u
k Hl(βv) , β =

√
ωb

σ2
, (15)

where Hs(βv) denotes the (physicists’) Hermite polynomials, and the parameter β
ensures proper scaling with respect to the noise intensity; R and S relate to the total
polynomial degree.

The coefficients qj,kl are determined by taking the mathematical expectation with
respect to the base PDF po(u, v) from Eq. (8). The solution procedure leverages the
orthogonality of the Hermite polynomials and applies a three-term recurrence relation,
as detailed in [8].

2.2 Performance of the Approximative Periodic Solution

The performance of the approximative periodic solution, derived via the Galerkin
stochastic moment method, was evaluated against a reference FEM solution com-
puted using standard NDSolve command in the Wolfram Mathematica 12.3. All
solutions were computed for the system defined by the parameters: ω2

0 = 1, γ4 = 0.5,
ωb = 0.25, P0 = 0.38, and Ω = 0.09, corresponding to a resonant noise intensity of
σ = 0.36. The maximal polynomial degree in the expansions was limited to RS = 8.

The Fokker-Planck equation (6) was solved over a spatial-temporal domain large
enough to include all regions with non-negligible probability. The initial condition
was taken as the stationary Boltzmann-type distribution described in Eq. (8).

Figure 2 provides a detailed comparison between the FEM solution and the stochas-
tic moment method with two different resolutions. Each row in the figure corresponds
to a different computational approach: the first row (a, b) presents the FEM bench-
mark solution; the second row (c, d) shows the PDF computed using the stochastic
moment method with J = 5 frequency term; and the third row (e, f) corresponds to
the stochastic moment method with J = 10 terms. In each row, the left column (a, c,
e) displays a 3D surface plot of the marginal PDF of displacement u as it evolves over
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(a) (b)

(c) (d)

(e) (f)

Figure 2: Comparison of marginal PDF evolution of u obtained via FEM (top row), the
stochastic moment method with J = 5 (middle row), and J = 10 (bottom
row). Left column: 3D plots of PDF evolution over time. Right column:
PDF cross-sections at u = ±1 (solid blue and dashed yellow), with periodic
forcing overlaid (green, dot-dashed).

time. The right column (b, d, f) shows temporal cross-sections of the marginal PDF at
u = ±1, with the values at u = 1 and u = −1 shown as solid blue and dashed yellow
lines, respectively. For reference, the external periodic forcing is overlaid as a green
dot-dashed line.

The stochastic moment method shows some agreement with the FEM solution
in capturing the timing and localization of the probability maxima, providing qual-
itatively similar behavior. Nevertheless, some notable discrepancies emerge. The
Galerkin approximation can produce negative probability values, especially at higher
harmonic resolutions, which are non-physical artifacts arising from polynomial over-
fitting. Additionally, the inclusion of more harmonics tends to induce unrealistically
sharp features in the PDF, compromising smoothness and physical plausibility. While
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reducing the number of basis elements from J =10 to 5 mitigates these negative val-
ues, it also introduces visible oscillations in the PDF, indicating aliasing due to under-
resolution. Increasing J beyond 10 yields no clear improvements, suggesting that the
method reaches a saturation point in accuracy with respect to modal resolution.

Furthermore, the moment method solutions exhibit a clear phase shift with respect
to the FEM benchmark, despite both being initialized from the same initial condition.
While this shift may not critically affect the analysis of cyclo-stationary properties of
the established periodic solution, it highlights a limitation of the method when captur-
ing transient dynamics. For applications where accurate modeling of time-dependent
behavior is essential, especially during the approach to steady state, a more advanced
or time-accurate numerical method would be necessary.

3 Conclusion

This study examined the response of a non-linear single-degree-of-freedom system
with cubic stiffness characteristics under the influence of combined random and peri-
odic excitation. A semi-analytical method, previously developed to approximate the
effects of stochastic resonance—based on the generalized method of stochastic mo-
ments—was here subjected to a more detailed theoretical and numerical evaluation.

The corresponding Fokker-Planck equation for the Duffing-type oscillator was solved
approximately, yielding a multiharmonic, periodic probability density function that
captured both fundamental and higher-order harmonics of the system’s non-stationary
behavior. While the method successfully revealed key qualitative features of the re-
sponse, including resonance amplification, its quantitative reliability was limited by
numerical artifacts such as non-physical negative probabilities introduced by polyno-
mial interpolation.

To assess accuracy, a reference solution was computed using a time-dependent
finite element method within a general-purpose numerical solver. This numerical
benchmark confirmed the structure and existence of the stochastic resonance regime,
highlighting both the strengths and the limitations of the semi-analytical model.

Several directions for refinement were identified. Replacing the polynomial inter-
polation with alternative function bases, such as exponential-polynomial expansions
or orthogonal splines, may improve numerical stability, convergence, and the physical
fidelity of the PDF, especially in regions with sharp gradients or localized features.

Although this work focused on cubic nonlinearities and additive noise, the frame-
work can be extended to more complex systems, including asymmetric or non-polynomial
nonlinearities. Future studies could also explore alternative analytical tools, such as
the Floquet theorem or the maximum entropy principle, to enhance the modeling of
noise-driven phenomena.

Finally, these findings hold potential for broader applications, particularly in fields
like post-critical aeroelasticity and vehicle dynamics, where understanding and con-
trolling stochastic resonance effects could provide new strategies for mitigating or
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harnessing noise-induced response amplification in engineering systems.
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