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Abstract 
 

This study investigates the steady-state harmonic response of nonlinear soil–

structure interaction (SSI) systems. A lumped parameter model is adopted, in which 

the soil is represented by nonlinear springs and dashpots to capture its dynamic 

behaviour. Using the harmonic balance method, amplitude-dependent equivalent 

stiffness and damping parameters are derived to characterise the nonlinear SSI 

response. A Monte Carlo framework is employed to determine these amplitude-

dependent properties across multiple soil configurations generated via the Discrete 

Element Method (DEM), accounting for the variability in particle distribution. The 

influence of this variability on the dynamic response of structures is examined 

through statistical analyses of the equivalent fundamental period and damping, both 

as functions of excitation amplitude. The methodology is demonstrated for two soil 

types: conventional gravel and a more innovative rubber–soil mixture. 
 

Keywords: nonlinear soil-structure interaction, distinct element method, soil 

uncertainty, soil particle distribution, harmonic balance, steady state response. 
 

1  Introduction 
 

Soil–structure interaction (SSI) studies can be traced back to the late 19th century 

[1]. The analysis of the response of an infinite (or semi-infinite) elastic medium 

represented the initial approach, which remains in use by researchers and 

practitioners today [2], [3]. However, due to the inherent nonlinear behaviour of the 

soil medium, the nonlinear SSI problem has been extensively investigated over the 
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past five decades, as the assumption of linear SSI is not always appropriate or 

beneficial [4], [5]. Despite the high accuracy achievable through finite element (FE) 

models, simplified models continue to play a significant role in SSI studies. These 

models, while requiring reduced computational effort, enable comprehensive 

parametric analyses and offer valuable insights into the influence of key physical 

parameters [6]. Recent contributions [7–13] have investigated simplified nonlinear 

spring models designed to capture essential characteristics of nonlinear SSI, such as 

changes in equivalent period and foundation damping. The influence of modelling 

simplifications on the uncertainty of seismic response in numerical simulations that 

include SSI has been examined through a real case study in [14], while a broader 

overview of the various types of uncertainties inherent in SSI is provided in [15]. 
 

 

In this study, the influence of soil particle distribution on dynamic SSI is 

investigated. The Discrete Element Method (DEM) is employed within a stochastic 

framework to simulate multiple SSI models, wherein the soil is characterised by a 

prescribed granulometric distribution. This results in spatially randomised, non-

overlapping particle configurations that reflect the inherent uncertainties of real soil 

materials. A Monte Carlo analysis is conducted over numerous realizations of these 

configurations to quantify the impact of variability in particle size distribution and 

packing structure on the lateral and rotational stiffness and damping of shallow 

foundations.  

 

 

Furthermore, for each realization, the steady-state response of a simplified 

nonlinear SSI system is analysed. To this end, the harmonic balance method [16], 

[17], as extended in [12] to nonlinear SSI problems, is applied. The steady-state 

solution is obtained by solving, for each realisation, a set of nonlinear algebraic 

equations. In addition, the variability of the equivalent fundamental SSI period 

induced by differences in soil particle distribution is also assessed.  
 

 
 

2  Methods 
 

Consider the multi-degree-of-freedom (m-DoF) system illustrated in Figure 1a. The 

superstructure is assumed to behave linearly, while the foundation is considered rigid 

and supported by a nonlinear, compliant soil medium. The SSI mechanism is 

represented by two uncoupled nonlinear hysteretic springs, as shown in Figure 1b. 

The equation of motion of the system subjected to a dynamic load vector 𝒑(𝑡) is 

given by: 
 

𝑴𝒖̈(𝑡) + 𝑪𝒖̇(𝑡) + 𝑲𝒖(𝑡) + 𝒉(𝑡) = 𝒑(𝑡)         (1) 
 

where 𝒖(𝑡) is the displacement vector, 𝑴, C, and 𝑲 are the mass, damping, and 

stiffness matrixes, respectively. Additionally, 𝒉(𝑡) is the nonlinear hysteretic vector 

encompassing the nonlinear forces generated by the soil springs, i.e., the horizontal 

force 𝑓ℎ and the moment 𝑓𝜃 (see Figure 1b and 1c). 
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Figure 1: Structure resting over a non-linear compliant soil (a) and its discretization 

(b); 3-DoF lumped mass model (c). 

 

For the simplest case (Figure 1c) of 3-DoF nonlinear soil-structure coupled system 

( 𝑖. 𝑒.  𝒖(𝑡) = [𝑢 𝑢𝐹  𝜃]𝑇 ) those matrixes reduce to  
 

𝑴 = [
𝑚 0 0
0 𝑚𝐹 0
0 0 𝐼𝐹

]                                                (2) 

 

where m is the superstructure mass, 𝑚𝐹 is the foundation mass,  𝐼𝐹 is the foundation 

moment of inertia; 

𝑲 = [
𝑘 −𝑘 −𝑘 𝐻

−𝑘 𝑘 𝑘 𝐻
−𝑘 𝐻 𝑘 𝐻 𝑘 𝐻2

]                                          (3) 

 

in which 𝑘  is the superstructure lateral stiffness and 𝐻 the height of the 

superstructure;  
 

  𝑪 = [
𝑐 −𝑐 0

−𝑐 𝑐 0
0 0 0

]                                               (4) 

 

with 𝑐 being the viscous damping of the superstructure. Additionally, the hysteretic 

term can be written as  
 

𝒉(𝑡) = [0 𝑓ℎ(𝑢𝐹 , 𝑢̇𝐹) 𝑓𝜃(𝜃, 𝜃̇)]𝑇                                    (5) 
 

where 𝑓ℎ(𝑢𝐹, 𝑢̇𝐹) and 𝑓𝜃(𝜃, 𝜃̇) are the nonlinear hysteretic elements pertinent to the 

translational and rotational foundation degrees of freedom 𝑢𝐹 and 𝜃, respectively. 

 

In order to determine the steady-state harmonic response of the soil-structure 

systems governed by Eq. (1) the loading term is assumed to be a harmonic excitation, 

i.e., 𝒑(𝑡) = 𝒑0 𝑐𝑜𝑠( 𝜔𝑡), with 𝒑0 the vector listing the input amplitudes, 𝜔 the 

circular frequency and 𝑡 is the time. Following the harmonic balance approach [16] 

and [17] the response is assumed to exhibit a pseudo-harmonic behavior, that is 
 

𝑢𝐹(𝑡) = 𝑎ℎ(𝑡) 𝑐𝑜𝑠( 𝜔𝑡 + 𝜙(𝑡)),     𝑢̇𝐹(𝑡) = −𝑎ℎ(𝑡)𝜔 𝑠𝑖𝑛( 𝜔𝑡 + 𝜙(𝑡)),    (6) 
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and 
 

𝜃(𝑡) = 𝑎𝜃(𝑡) 𝑐𝑜𝑠( 𝜔𝑡 + 𝜙(𝑡)),     𝜃̇(𝑡) = −𝑎𝜃(𝑡)𝜔 𝑠𝑖𝑛( 𝜔𝑡 + 𝜙(𝑡)),        (7) 
 

in which the amplitudes 𝑎ℎ(𝑡) and 𝑎𝜃(𝑡) and the phase 𝜙(𝑡) are assumed slowly 

varying with respect to time. The nonlinear terms 𝑓
ℎ
(𝑢𝐹, 𝑢̇𝐹) and 𝑓

𝜃
(𝜃, 𝜃̇) are, 

therefore replaced, in a harmonic balance sense, by the expressions ([17], [18]) 

 
 

𝑓
ℎ
(𝑢𝐹, 𝑢̇𝐹) = 𝑐𝑒,ℎ(𝑎ℎ)𝑢̇𝐹 + 𝑘𝑒,ℎ(𝑎ℎ)𝑢𝐹,        (8) 

 

where 

 
 

𝑐𝑒,ℎ(𝑎ℎ) = −
1

𝜋𝜔𝑎ℎ
∫ 𝑓ℎ(𝑎ℎ 𝑐𝑜𝑠 𝜗 , −𝑎ℎ𝜔 𝑠𝑖𝑛 𝜗) 𝑠𝑖𝑛 𝜗 𝑑𝜗

2𝜋

0
,          (9) 

 

and 

 
 

𝑘𝑒,ℎ(𝑎ℎ) =
1

𝜋𝑎ℎ
∫ 𝑓ℎ(𝑎ℎ 𝑐𝑜𝑠 𝜗 , −𝑎ℎ𝜔 𝑠𝑖𝑛 𝜗) 𝑐𝑜𝑠 𝜗 𝑑𝜗

2𝜋

0
 ,        (10) 

 

are the equivalent horizontal damping and stiffness, respectively. Similarly, 
 

𝑓
𝜃
(𝜃, 𝜃̇)  = 𝑐𝑒,𝜃(𝑎𝜃)𝜃̇ + 𝑘𝑒,𝜃(𝑎𝜃)𝜃,         (11) 

 

where 
 

           𝑐𝑒,𝜃(𝑎𝜃) = −
1

𝜋𝜔𝑎𝜃
∫ 𝑓𝜃(𝑎𝜃 𝑐𝑜𝑠 𝜗 , −𝑎𝜃𝜔 𝑠𝑖𝑛 𝜗) 𝑠𝑖𝑛 𝜗 𝑑𝜗

2𝜋

0
,         (12) 

and 
 

𝑘𝑒,𝜃(𝑎𝜃) =
1

𝜋𝑎𝜃
∫ 𝑓𝜃(𝑎𝜃 𝑐𝑜𝑠 𝜗 , −𝑎𝜃𝜔 𝑠𝑖𝑛 𝜗) 𝑐𝑜𝑠 𝜗 𝑑𝜗

2𝜋

0
 ,    (13) 

 

are the equivalent rotational damping and stiffness. The equivalent linear system of 

Eq. (1) is, therefore, rewritten as:  

 
 

𝑴𝒖̈(𝑡) + (𝑪 + 𝑪𝑒(𝑎ℎ , 𝑎𝜃))𝒖̇(𝑡) + (𝑲 + 𝑲𝑒(𝑎ℎ , 𝑎𝜃))𝒖(𝑡) = 𝒑0 𝑐𝑜𝑠( 𝜔𝑡)  

 (14) 

 

where 𝑲𝑒(𝑎ℎ , 𝑎𝜃) and 𝑪𝑒(𝑎ℎ , 𝑎𝜃) are the equivalent stiffness and equivalent 

damping matrixes, respectively. To be more specific, in the case of the 3-DoF system 

shown in Figure 1c, 𝑲𝑒(𝑎ℎ , 𝑎𝜃) and 𝑪𝑒(𝑎ℎ , 𝑎𝜃) assume the following form: 

 
 

𝑲𝑒(𝑎ℎ, 𝑎𝜃)  = [

0 0 0
0 𝑘𝑒,ℎ(𝑎ℎ) 0

0 0 𝑘𝑒,𝜃(𝑎𝜃)
],                                         (15) 
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and 
 

𝑪𝑒(𝑎ℎ, 𝑎𝜃) = [

0 0 0
0 𝑐𝑒,ℎ(𝑎ℎ) 0

0 0 𝑐𝑒,𝜃(𝑎𝜃)
].                                         (16) 

  
The steady-state response is finally determined by the equation 

 

𝑼(𝑎ℎ , 𝑎𝜃; 𝜔) = [(𝑲 + 𝑲𝑒(𝑎ℎ, 𝑎𝜃)) + 𝑖𝜔(𝑪 + 𝑪𝑒(𝑎ℎ , 𝑎𝜃)) − 𝜔2𝑴]−1𝒑0,     (17) 
 

which represents a nonlinear algebraic equation whose solution can be pursued by 

traditional numerical techniques.  

 

The analysis of Equations (15)-(17) highlights that a key challenge lies in the 

accurate evaluation of the amplitude-dependent stiffness and damping parameters, 

namely 𝑘𝑒,ℎ(𝑎ℎ), 𝑘𝑒,𝜃(𝑎𝜃), 𝑐𝑒,ℎ(𝑎ℎ) and 𝑐𝑒,𝜃(𝑎𝜃). In previous studies, these 

quantities have been obtained either experimentally, through centrifuge testing [11], 

or analytically, by employing the Preisach hysteresis formalism [12]. In the present 

work, they are evaluated numerically using the Discrete Element Method (DEM) to 

explicitly account for the inherent variability of soil arising from particle-scale 

heterogeneity.  

 

 

DEM simulations, inspired by centrifuge modelling principles, are performed 

using the open-source code YADE [19]. A three-step procedure is adopted: (1) 

calibration of contact law parameters, (2) generation of the DEM model, and (3) 

execution of simulations followed by post-processing. In the DEM framework, the 

granular medium is modelled as an assembly of discrete particles interacting at 

contact points via spring–dashpot mechanisms. A major advantage of this approach 

is its ability to capture microstructural features of the material, including 

heterogeneity and dilative behaviour, which are often neglected in continuum-based 

formulations. The motion of each particle is tracked by numerically integrating its 

equations of motion at each time step, enabling a detailed and realistic simulation of 

soil response under dynamic loading conditions. 

 

3  Results 
 

The development of the numerical model was guided by the centrifuge tests carried 

out by Tsang et al. [20], which examined the performance of geosynthetic-reinforced 

rubber–soil mixtures (RSM) incorporating varying rubber contents. In those 

experiments, pure gravel was employed as the baseline for comparison. Based on 

their experimental setup, including geometry, material properties, and boundary 

conditions, a centrifuge-scaled numerical model was constructed to replicate the 

behaviour of a rectangular shallow foundation with plan dimensions of 18 m × 12 

m. The foundation was analysed under two distinct soil conditions: (i) a 

homogeneous gravel layer and (ii) a composite profile consisting of an RSM layer 

underlain by gravel. 
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 The pure gravel layer was modelled as a three-dimensional assembly of spherical 

particles, whose radii were randomly sampled from a granulometric distribution 

represented by a cumulative distribution function (CDF). Particle diameters ranged 

between 6.35 mm and 9.53 mm, with a median value D50,G = 7.3 mm. To simulate 

the Rubber- Soil Mixture, the gravel-based particle assembly was modified by 

substituting 30% of its total mass with rubber particles. The rubber inclusions were 

also modelled as discrete spheres with a median particle diameter of D50,RSM = 3.1 

mm. 

 

The footing was assumed to be rigid and shallowly embedded at a depth of 1 m. 

The surrounding soil domain extended 35.5 m in length, 26 m in width, and 7.5 m 

in depth. In configurations including the RSM, the additional layer covered an area 

of 22 m × 16 m with a thickness of 3 m. Figure 2 illustrates the corresponding 

reduced-scale model developed according to centrifuge scaling principles.  

 
(a) 

 

(b)  

 

 
 

Figure 2: Reduced-scale model (dimensions in mm): (a) Top view; (a) Lateral 

view. 

 

The optimal contact and mechanical model parameters, summarised in Table 1, 

were identified by calibrating the numerical simulations to match the experimentally 

observed shear modulus degradation and damping ratio curves, as functions of shear 

strain amplitude, reported in [21] and [22]. 

 
Parameter Gravel Rubber 

Density, ρ [kg/m³] 2650 1200 

Poisson's ratio, ν 0.12 0.48 

Young modulus E, Pa 1×109 1×109/350 

Inter-particle friction coefficient, μ  0.7 (35)   0.83 (40)   

Number of particles (1 pack) 265000  470000  

Timestep [s] 2.11×10−6 1.57×10−6 

Table 1: Model Parameters. 

 

A total of 300 independent particle assemblies were generated for each SSI 

configuration (i.e., gravel-only and RSM). All simulations were conducted under an 

enhanced gravitational field of 50g to replicate prototype stress conditions. The 
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simulations were performed on a high-performance computing (HPC) cluster, with 

the generation of each assembly parallelised across multiple compute nodes to 

ensure computational efficiency. Within each assembly, particle placement followed 

a Monte Carlo procedure governed by four independent random variables: the three 

spatial coordinates, sampled from uniform distributions, and the particle radius, 

drawn from the prescribed particle size distribution. Representative samples from 

the generated assemblies are shown in Figure 3. 

 
(a) 

 

(b) 

 
Figure 3: Samples of randomly generated SSI models: (a) Gravel-only; (b) RSM. 

 

Stiffness translational and rotational curves from each simulation are presented 

as functions of the amplitudes 𝑎ℎ and 𝑎𝜃 in Figure 4. Specifically, the first row of 

the figure refers to the translational stiffness, whereas the second one to the rotational 

stiffness. Additionally, the subfigures on the left are related to the gravel-only 

configurations, while those on the right to configurations including the RSM layer. 

Each black curve represents the individual simulation outcome.  

 
(a) 

 

(b) 

  
(c) 

 

(d)   

  

  
Figure 4: Translational stiffness of the shallow foundation: (a) Gravel-only; (b) 

RSM. Rotational stiffness of the shallow foundation: (c) Gravel-only; (d) RSM. 

 

The results indicate that both the mean values and the associated variability of the 

system response decrease significantly with increasing displacement amplitude, 
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exhibiting a trend toward asymptotic stabilisation. This behaviour suggests a 

diminishing influence of initial uncertainties in the SSI models at larger deformation 

levels. When comparing the gravel-only and RSM configurations, the gravel-only 

case displays higher mean stiffness values, as anticipated, along with slightly greater 

variability across the ensemble. 

 

 

Figure 5 shows the damping translational (Figures 5a and 5b) and rotational 

(Figures 5c and 5d) curves. Also in this case, Figures 5a and 5c, on the left, refer to 

the grave-only configurations, whereas, Figures 5b and 5d, on the right, pertain to 

configurations with RSM. 

 

 
 

 

(a) 

 

(b) 

  
(c) 

 

(d)   

  

  
Figure 5: Translational damping of the shallow foundation: (a) Gravel-only; (b) 

RSM. Rotational damping of the shallow foundation: (c) Gravel-only; (d) RSM. 

 

 

In contrast to the trend observed for stiffness, the variability in damping values 

increases with displacement amplitude. This behaviour is likely attributed to the 

growing uncertainty associated with the progressive widening of hysteresis loops at 

higher deformation levels. A comparison between the two configurations reveals that 

the RSM case exhibits higher mean damping values, while also demonstrating 

reduced variability relative to the gravel-only configuration. 

 

The superstructure geometrical and mechanical parameters necessary for the 

model are reported in Table 2 [22].  Using these data, the steady state response is 

then determined for each realization of soil pack.  
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Data Value 

H [m]   height of the superstructure 10 

𝑚 [Mg] mass of the superstructure 650 

𝑚𝐹 [Mg] mass of the foundation 260 

𝐼𝐹 [Mg m2] moment of inertia of the foundation 5.62x103 

T [s] fundamental period of the superstructure assumed fully fixed 0.37 

𝜁 damping ratio of the superstructure 0.05 

Table 2: Mechanical and Geometrical Parameters of the 3-DoF structural model. 

 

Figure 6 presents the variability of the top displacement for three selected values 

of the input amplitude 𝑝0. From top to bottom, the three rows of Figure 6 refer to 

amplitudes 𝑝0 = 5000N, 𝑝0 = 10000N, and 𝑝0 = 20000N, respectively. The left 

column (Figures 6a-c) refers to gravel-only configurations, while the right column 

(Figures 6d-f) refers to configurations with RSM. For both soil types, the results 

clearly indicate a nonlinear softening response as the load amplitude increases. The 

case with RSM shows a slightly larger dispersion of the results. 

 
(a) 

 

(d) 

  
(b) 

 

(e)   

  

  
(c) 

 

(f) 

 

Figure 6: Steady state response variability: (a-c) Gravel-only with (a) 𝑝0 = 5000N, 

(b) 𝑝0 = 20000N, and (c) 𝑝0 = 30000N; (d-f) RSM with (d) 𝑝0 = 5000N, (e) 𝑝0 = 

20000N, and (f) 𝑝0 = 30000N. 

 

Finally, the variability of the equivalent period  𝑇𝑒(𝑎ℎ, 𝑎𝜃)  
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𝑇𝑒(𝑎ℎ,𝑎𝜃)

𝑇
= √1 +

𝑘

𝑘𝑒,ℎ(𝑎ℎ)
+

𝑘 𝐻2

𝑘𝑒,𝜃(𝑎𝜃)
                                           (18) 

 

of the nonlinear SSI system under the hypothesis of massless rigid foundation [12] is 

explored. 

 

The results in Figure 7 clarify that the equivalent period is affected by both the 

rotational amplitude 𝑎𝜃 and the translational amplitude 𝑎ℎ in the range of explored 

values. Moreover, the increment of the fundamental period due to the SSI is, as 

expected larger when considering the GSI-RSM layer. Variability due to the soil 

pack soil particle distribution is also evident for both soil conditions. 

 

 
a) 

 
 

 

b) 

Figure 7: Contour maps of the equivalent SSI period variability for three randomly 

selected simulations a) Gravel-only; b) RSM. 
 

4  Conclusions and Contributions 
 

In this study, a comprehensive numerical framework was developed to investigate 

the steady-state harmonic response of nonlinear soil–structure interaction systems. 

The approach integrated a simplified 3-DoF lumped mass model with amplitude-

dependent stiffness and damping properties derived using the harmonic balance 

method. To account for the inherent variability in soil behaviour, a Monte Carlo 

analysis was conducted based on discrete element method simulations of gravel and 

rubber–soil mixture foundations. These simulations captured the influence of 

particle-scale randomness on the equivalent dynamic properties of shallow 

foundations. The resulting statistical distributions of stiffness, damping, and 

equivalent fundamental period were analysed to assess the variability introduced by 

soil heterogeneity. 
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The findings indicate a clear nonlinear softening behaviour with increasing 

excitation amplitude, particularly in terms of stiffness reduction and period 

elongation. While the variability in stiffness tends to decrease at larger 

displacements, the damping variability increases, especially due to the widening of 

hysteresis loops. Comparisons between gravel-only and RSM configurations 

showed that the inclusion of rubber particles led to higher damping values and 

reduced variability, suggesting improved energy dissipation and robustness. Overall, 

the methodology provides a robust tool for quantifying soil–structure interaction 

effects under uncertain soil conditions and supports the development of 

performance-based design strategies for foundations subjected to dynamic loading. 
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